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Abstract

In the estimation of causal effects with observational data, applied analysts often
use the differences-in-differences (DID) method. The method is widely used since the
needed before and after comparison of a treated and control group is a common sit-
uation in the social sciences. Researchers use this method since it protects against
a specific form of unobserved confounding. Here, we develop a set of tools to allow
analysts to better utilize the method of DID. First, we articulate the hypothetical
experiment that DID seeks to replicate. Next, we outline the form of matching that
allows for covariate adjustment for the DID method that is consistent with the hypo-
thetical experiment. We also summarize a set of confirmatory tests that should hold
if DID is a valid identification strategy. Finally, we adapt a well known method of
sensitivity analysis for hidden confounding to the DID method. We develop these sen-
sitivity analysis methods for both binary and continuous outcomes. We then apply our
methods to two different empirical examples from the social sciences.
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1 Introduction

The need to understand the relationship between cause and effect is an essential part of

public policy. Effective policymaking requires understanding the causal effects of proposals in

order to devise the optimal policy. The need to understand relationships between cause and

effect arises in almost every policy domain, including health, labor, education, environmental

studies, public safety, and national security.

It is well understood that randomized policy evaluations are the “gold-standard,” since

randomization ensures that subjects are similar except for receipt of the treatment of inter-

est. However, many policy evaluations occur in settings where randomized experiments are

difficult or impossible. When randomized interventions are not possible, researchers may

conduct an observational study. Cochran (1965) defined an observational study as an em-

pirical analysis where the objective is to elucidate cause-and-effect relationships in contexts

where subjects select their own treatment status. When subjects select into treatments,

outcomes may reflect pretreatment differences in treated and control groups rather than

treatment effects (Cochran 1965; Rubin 1974). Pretreatment differences in treated and con-

trol groups arise for either measurable differences which form overt biases or unmeasured

differences which form hidden biases. In an observational study, analysts use pretreatment

covariates and a statistical adjustment strategy such as matching or regression modeling to

remove overt biases in the hopes of consistently estimating treatment effects.

It is also well understood, however, that such statistical adjustments do little to ensure

that estimated treatment effects do not reflect hidden bias from confounders that were not

included in the statistical adjustments. As such, investigators often employ devices, which

consist of information collected in hopes of distinguishing an estimated association from bias

(Rosenbaum 2010). One such device is the method of differences-in-differences. Differences-

in-differences (DID) is used to distinguish an estimated treatment effect from bias by studying

a single treatment using four different groups where only certain patterns of response among

the four groups are compatible with a treatment effect. In the simplest DID design, the
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analysts observes treated and control groups before and after the treatment is administered.

The DID estimate of the treatment effect is the difference of the after minus before for the

treated group and the after minus before for the control group.

The method of DID is used to evaluate treatments across a wide range of policy domains.

One famous example based on a DID design studied the effect of the Mariel Boatlift from

Cuba on employment rates in the Miami labor market (Card 1990). Another well known

example based on differences-in-differences is in Dynarski (1999). Here, she studies the

treatment effect of the additional aid on the decision to attend college, using changes in the

Social Security Student Benefit Program, which awarded college aid to high school seniors

with deceased fathers of Social Security recipients. Other examples include Card and Krueger

(1994) study of changes in minimum wage laws on levels of employment and Leighley and

Nagler (2013) study of whether voter registration laws increase voter turnout.

While the DID method does protect against a specific form of unobserved bias, it may

still be the case that subjects differ with respect to an unmeasured covariate that is not

protected. Given uncertainty about the possibility of bias from unmeasured covariates, it

is often useful to conduct a sensitivity analysis. A sensitivity analysis asks how strong the

effects of an unmeasured covariate would have to be to substantively alter the conclusions

from the study. In this study, we outline a method of sensitivity analysis for differences-in-

differences. In addition, we describe a specific testing plan, which better allows analysts to

judge whether a design based on differences-in-differences is plausible. This testing plan is

based on the implied experiment that underlies a differences-in-differences design. We show

that while an observational study based on differences-in-differences has some advantages,

the method of differences-in-differences in many ways offers little protection against bias from

hidden confounders, and its use would benefit from attention to some oft ignored points.

In this paper, we first formally describe the method of differences-in-differences by outlin-

ing the implied randomized experiment that a DID analysis mimics. We then evaluate DID

as a research design which motivates our two contributions. First, we articulate a covari-
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ate adjustment strategy based on matching that mimics the implied experiment. We argue

that covariate adjustment based on matching more closely follows the implied experiment

and can reveal important differences between the treated and control group that may be

missed if regression models are used. We then develop methods for sensitivity analysis. Our

method for sensitivity analysis directly built on the method of sensitivity analysis outlined

in Rosenbaum (2002). We show that in several important ways, DID designs are quite sen-

sitive to bias from hidden confounders. Finally, we conclude with two different empirical

applications. In each application, we draw important lessons about how to judge whether

an analysis based on DID is likely subject to bias from hidden confounders.

2 The Method of Differences-in-Differences

Observational studies that adopt a DID design share a common structure where a longitu-

dinal component is observed along with an instance where a nonrandomly assigned treatment

is applied to one group but not another. In each case, outcomes are observed for both the

treated and control group before the treated group receives the treatment. Outcomes are

then observed after the treatment has been administered to the treatment group. For ex-

ample, in one of the applications below, we study whether the ability to register to vote on

election day increases turnout. Specifically, we study when Wisconsin adopted election day

registration (EDR) in 1976. Here, residents of Wisconsin form the treated group, and we

could designate residents of any state that did not adopt EDR as the control group. Turnout

rates are observed in both the treated and control group before and after adoption of EDR.

The DID estimate of the EDR treatment effect is based on the treated and control contrast

in the temporal changes in turnout. That is, the investigator takes the treated and control

difference of the temporal differences in voter turnout. DID produces valid treatment effect

estimates so long as all confounders are time invariant (Angrist and Pischke 2009).
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2.1 Notation

Next, we develop formal notation for the DID method. We develop notation based on

the experimental design that would produce the pattern of effects implied under a DID

design, since one approach to the planning and design of observational studies is to study

the similarities to and differences from an analogous randomized experiment (Cochran 1965;

Rubin 1974). We later use matching as the method to adjust for overt bias, as such, the

implied experiment and the accompanying notation reflects the pairing produced by the

matching process.

There are I matched sets, i = 1, . . . , I, where each set i contains 4 subjects, j = 1, 2, 3, 4,

with each subject assigned to one of 4 distinct conditions a, b, c, and d. Subjects in condition

a are assigned to the treatment group and their outcomes are recorded after the treatment is

applied, and subjects in condition b are assigned to the treatment group before the treatment

is applied. Next, subjects in c are control subjects with outcomes recorded after treatment

is applied, and subjects in condition d are control subjects with outcomes recorded before

the treatment is administered. The I sets are matched for observed covariates x, so that

xi1 = xi2 = xi3 = xi4 for all i. In our notation, we are agnostic as to whether we observe the

same units before and after treatment. That is, we may assign the treatment to different

sets of units in each time period or the same set of units before and after. If identical units

are observed across time, we might instead adopt a design that conditions on the distinctive

histories of the units. If so, an alternative design that focuses on comparisons of treated and

control units with similar histories might be more appropriate (Abadie et al. 2010; Li et al.

2001; Zubizarreta et al. 2014b).

Under a randomized design, if the jth subject in matched set i is assigned to group

k ∈ {a, b, c, d}, write Zij = k. Then Zi = (Zi1, Zi2, Zi3, Zi4) is a permutation of {a, b, c, d} for

each i. Let K = {abcd, abdc, . . . , dcba} be the set containing the 4! = 24 possible values of Zi

formed by permuting the letters a, b, c, d. Let Z be the matrix with I rows and 4 columns

whose I rows are the Zi, and let Z be the set containing the (4!)I possible values z of Z, so

5



z ∈ Z if each row of z is a permutation of {a, b, c, d}. Also, denote the cardinality of a finite

set S by |S|, so |K| = 4! and |Z| = (4!)I . A randomized block experiment would use random

numbers to pick a z at random, each z ∈ Z having the same probability |Z|−1 = (4!)−I .

This design enforces Z ∈ Z. For brevity, with a slight abuse of notation, conditioning on

the event Z ∈ Z is abbreviated as conditioning on Z. Such an experiment would randomly

assigns units to treatment or control in the two specific time periods.

Each subject ij has a potential outcome under each condition k ∈ {a, b, c, d}, so ij would

exhibit response rijk if ij received treatment k with Zij = k, but because each subject is

seen under only one treatment, treatment effects such as rija − rijc are not observed for any

subject ij; see Neyman (1923) and Rubin (1974). The response actually observed from ij

is Rij which equals rijk if Zij = k ∈ {a, b, c, d}. Also, write Yik for the response Rij of the

subject in block i who received treatment k, that is, the subject with Zij = k; then, Yia−Yib

is the before-after change in the treated group, and (Yia − Yib)− (Yic − Yid) is the interaction

or difference-in-difference contrast. Fisher’s (1935) sharp null hypothesis H0 of no effect of

any kind asserts rija = rijb = rijc = rijd for all subjects ij. If the only aspect of the treatment

condition {a, b, c, d} that affected the response was the introduction of the treatment, then

rijb = rijc = rijd for all ij, and we refer to this as the hypothesis of an isolated effect of the

treatment. An isolated and additive effect τ of the treatment has rija− τ = rijb = rijc = rijd

for all ij.

Each subject ij has observed covariates xij and an unobserved covariate uij, and sets

were matched for xij, so xij = xij′ for all i, j, j′, but after matching for xij subjects

may differ in terms of uij, so possibly uij 6= uij′ for many or all i, j, j′. Write F =

{(rij1, . . . , rij4,xij, uij) , i = 1, . . . , I, j = 1, . . . , J}. We also collect u = (u11, u12, . . . , uIJ)T ,

R = (R11, R12, . . . , RIJ)T , and rk = (r11k, r12, . . . , rIJk)T for k = 1, 2, 3, 4. Below, we outline

a method of matching so that xi1 = xi2 = xi3 = xi4 for all i.

An experimental design of this type is relatively uncommon in practice. More typically,

an observational study is based on this design where outcomes for treated and control groups
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are observed before and after a treatment is nonrandomly applied. Analysts then focus on

the difference-in-difference contrast as the causal estimand of interest. Observational studies

based on the DID device are considered useful since, even when the treatment is self-selected,

it protects against two specific forms of bias. The two specific forms of bias are a uniform time

trend, which we denote λt, affecting both groups in the same way, and a constant difference

between treated and control groups, which we denote λd, such that, if both distorting effects

were present in addition to an additive treatment effect without other distorting effects, then

rija− τ = rijd + λt + λd, rijb = rijd + λd, and rijc = rijd + λt. We refer to this as the additive

distortions model. When the additive distortions model is correct, the interaction contrast or

difference-in-difference (Yia − Yib)− (Yic − Yid) removes the additive biases λt and λd. Thus,

use of DID removes unobserved additive bias. However, as we next review, while protection

against this form of bias is useful, use of DID does not render estimated treatment effects

credible causal effects.

2.2 Evidence Based on Differences-in-Differences

One approach to the analysis of causal effect using observational data emphasizes the use

of natural experiments, research design, and credible modeling of the treatment assignment

process (Imbens 2010; Rubin 2008; Keele 2015; Rosenbaum 2015a). In particular, there is a

strong emphasis on finding instances where a treatment is assigned through some natural,

haphazard process. The method of DID is often strongly associated with this approach

to causal inference, since it has been applied to data from several well-known examples of

natural experiments (Card 1990; Freedman 1991). However, we would argue that DID by

itself is really just an estimation method, not a research design. While analyses that use

DID may sometimes give credible evidence, in those cases, it’s the research design (as-if

random treatment assignment, careful data collection, measurement, checks of assumptions)

that makes the study credible, not the use of DID on its own. In many applications, DID is

applied to contexts where there treatment assignment is entirely purposeful and few aspects
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of good design hold.

In “Reforms as Experiments,” Campbell (1969) discussed studies of the effects of institu-

tional reforms. In particular, he discussed studies that measure institutions before and after

the reform, as well measuring unreformed control institutions at parallel times. He offered

an insightful discussion on the barriers to the success of such studies that have clear implica-

tions for the credible use of DID. Following his discussion, Figure 1 illustrates several issues

that arise when DID is applied to data. Figure 1 depicts the median outcome in treated and

control groups, in the periods before and after treatment in the treated group. We might

ask which of these four patterns provides the best evidence for the existence of a treatment

effect?

Among the examples in Figure 1, case A is the most convincing: treated and control

groups had similar outcomes prior to treatment, the control group did not change, but the

outcomes increased in the treated group. In case A in Figure 1, three different quantities

all suggest the same effect of the treatment at the median: the post-treatment difference

between treated and control groups, the change from base-line in the treated group, and the

interaction or difference-in-differences. Case B is less convincing but not totally unconvinc-

ing: treated and control groups had similar outcomes prior to treatment and very different

outcomes after treatment, but the control group changed in the absence of treatment, and

of course the log transformation changes the magnitudes but not the pattern. In case B, the

change from baseline in the treated group is not a plausible estimate because the controls

also changed, but the post-treatment difference and the interaction produce the same esti-

mate of effect. Case C is also less convincing than case A, and arguably less convincing than

case B: the groups were not comparable prior to treatment, but the treated group changed

while the control group did not, and the log transformation changes magnitudes but not the

pattern. In case C, the post-treatment difference is not a plausible estimate of effect, but the

change in the treated group and the interaction produce the same estimate of effect. Case

D is the least convincing, perhaps totally unconvincing: the groups were not comparable
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prior to treatment, both groups changed, but the treated group changed by a larger amount.

Even in the most convincing case, case A, an additional pre-treatment measure one period

before the plotted pretreatment measure might reveal a lazy X pattern with the cross at the

shared before point, so that both groups were on a linear trajectory that did not change

after treatment, suggesting no treatment effect.

In each case, application of differences-in-differences is possible, but absent more detailed

background knowledge of how treatments were assigned there little reason to think of it as

a panacea, since the protection against hidden bias offered by differences-in-differences is

mostly the result of arithmetic convenience rather than the plausibility that the sole source

of bias stems from the additive distortions model. The lower portion of Figure 1 depicts the

corresponding situations after a log transformation of the outcome. The log transformation

is intended to be just one representative of the family of strictly increasing transformations.

Under the log transformation, we observe that the treatment effect is mostly eliminiated in

case D in Figure 1. As such, the additive distortions model might hold for log(rijk) but not

for rijk, or conversely, or it might hold for some other strictly increasing transformation of

rijk but neither rijk nor log(rijk). Therefore, the additive pattern of distorting effects comes

and goes with strictly monotone transformations of the response, leading us to doubt that

additivity can be the central issue in answering a question about treatment effects. The fact

that a design based on DID offers a solution to this form of bias often appears to be the

primary reason investigators assume the bias has this convenient form. As such, widespread

use of DID appears to mostly result from this common pattern in data rather than a belief

that these are the only two forms of bias.

In what follows, we offer two improvements for designs that rely on the DID contrast.

First, we outline how covariate adjustment can be accomplished via matching. While analysts

typically adjust for covariates using regression models in a DID analysis, this imposes strong

function form assumptions that may not be justified. Next, we develop a form of sensitivity

analysis that allows analysts to quantify whether study conclusions are sensitive to the
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presence of bias from hidden confounders. The protection against additive bias offered by

DID does rule out many other forms of bias, and analysts should further probe study results

for sensitivity to hidden confounding.

2.3 Adjustment for Overt Bias Via Matching

As we noted above, use of the DID device protects against two distorting effects that

might bias treatment effect estimates. However, statistical methods are often applied to

adjust for observed covariates that may be time varying confounders. Most often such

adjustments are applied using linear regression models, though see Abadie (2005); Athey

and Imbens (2006); Stuart et al. (2014) for exceptions. Next, we outline how matching may

be used remove overt bias in the context of DID. Matching has the advantage that it may

be applied without reference to outcomes and imposes weaker functional form .

Here, three different matches must be performed so that units are balanced both with

respect to treatment and control arms, but also with respect to time period. First, we

match treated units to control units in the pretreatment time period. This removes possible

differences across treated and control groups prior to treatment. Next, we match treated

to control units in the post-treatment time period. After these first two matches, we now

have two sets of matched pairs, one from the pretreatment time period and one set from

the post-treatment time periods. Using these two sets of matched pairs, we next match pre-

treatment pairs to post-treatment pairs. In sum, we match pairs from the pretreatment time

period to pairs from the post-treatment time period based on observed covariates. This third

match balances observed covariates with respect to time. The form of matching in each case

need not be specific. Ideally, the matching would be done using an optimization algorithm

(Rosenbaum 1989; Ming and Rosenbaum 2000; Hansen 2004; Zubizarreta 2012). We imple-

ment the matching in the application below using a method based on integer programming

(Zubizarreta 2012). This form of matching allows us to specify specific balance constraints

for each covariate. We implemented the matches using the R package designmatch (Zu-
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bizarreta and Kilcioglu 2016). We advocate matching as the method of adjustment since it

allows us to remove overt biases without reference to outcomes. This prevents explorations

of the data that may invalidate inferential methods (Rubin 2007). Moreover, matching does

not impose restrictive functional form constraints required for more conventional methods

of adjustment based on regression modeling.

As a practical matter, we first match treated and control pairs in each time period

and then match matched pairs to matched pairs across the time periods. We use summary

statistics for the pair as covariates in the second match. That is, for the matched pairs in each

time period, we use the within pair mean as the covariate. For nominal covariates, the mean

may not be a suitable summary within the pairs. In the applications that follow, we solve this

problem by either exact matching or fine balance. Fine balance constrains an optimal match

to exactly balance the marginal distributions of a nominal (or categorical) variable, perhaps

one with many levels, placing no restrictions on who is matched to whom. This ensures that

no category receives more controls than treated, and so the marginal distributions of the

nominal variable are identical between the treatment and control groups. See Rosenbaum

et al. (2007) and Yang et al. (2012) for more details on fine balance. If we apply either fine

balancing or exact matching to any nominal covariates in the initial matches, we can then

exactly match or fine balance these covariates when we match pairs across the two time

periods. The end result is matched sets such that xi1 ≈ xi2 ≈ xi3 ≈ xi4 for all i.

3 A Method of Sensitivity Analysis for DID

Next, we outline a method for sensitivity analysis that may be applied to DID estimates

for the treatment effect. A sensitivity analysis allows an investigator to quantify the degree to

which a key assumption must be violated in order for the original conclusion to be reversed.

If an inference is sensitive, a slight violation of the assumption may lead to substantively

different conclusions. We outline a sensitivity analysis method for DID based on a more
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general methods of bounds developed by Rosenbaum (2002). Under this method, one places

bounds on quantities such as the treatment effect point estimate or p-value based on a

conjectured level of confounding. We, first, outline the basic model for sensitivity analysis

that we refer to as Rosenbaum bounds.

3.1 Model for sensitivity analysis: treatment assignments depend upon ob-

served and unobserved covariates

In the population before matching, the unknown probability that subject ij is exposed

to treatment k is

πijk = Pr (Zij = k| F) =
exp {ξk (xij) + δk uij}∑

`∈{a,b,c,d} exp {ξ` (xij) + δ` uij}
, u ∈ U , (1)

where U = [0, 1]4I is the 4I-dimensional unit cube, ξk (·) is some unknown function, δk is

an unknown sensitivity parameter, and treatment assignments for distinct subjects are inde-

pendent. Under this model, the probability of assignment to treatment is solely a function

of observed covariates and uij an unobserved binary covariate. Write δ = (δa, δb, δc, δd)
T ,

and without loss of generality we may assume δk ≥ 0 for k = a, b, c, d, because replacing δk

by δk − mink′∈{a,b,c,d} δk′ does not change πijk in (1). Model (1) says that two subjects, ij

and i′j′, with the same observed covariate, xij = xi′j′ , may differ in their odds of receiving

treatments k and k′ by at most a factor of exp (δk − δk′) because of uij 6= ui′j′ , that is,

1

exp (δk − δk′)
≤ πijk (1− πi′j′k′)
πi′j′k′ (1− πijk)

≤ exp (δk − δk′) . (2)

Generally, it is useful to have a single parameter Γ that summarizes the potential uncertainty

due to the unknown vector δ, specifically: Γ = exp (γ) where 0 ≤ γ = maxk∈{a,b,c,d} δk, so

0 ≤ δk ≤ γ for k ∈ {a, b, c, d} and the odds ratio in (2) is at least 1/Γ = exp (−γ) and at

most Γ = exp (γ) for all k, k′ ∈ {a, b, c, d}. In sum, if two subjects have the same observed
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covariates x, then they may differ in their odds of receiving one of the four possible treatments

by at most a factor of Γ. Two subjects, say ij and ij′, with the same observed covariates,

xij = xij′ , might be matched in the same block, and if Γ = exp (γ) = 1 then these two

subjects have the same unknown chance of receiving each treatment in (1), πijk = πij′k for

each k. However, if Γ > 1 then matching for xij failed to make the probability of treatment

equal due to differences in uij.

If k ∈ K, then write δk for (δk1 , δk2 , δk3 , δk4)
T . For instance, with k = acbd, δk is

(δa, δc, δb, δd)
T . Matching for xij enforces xij = xij′ and Zi ∈ K for all i, j, j′. Then

conditioning on Zi ∈ K in (1), yields

Pr (Zi = k| F ,Zi ∈ K) =
exp

(
uT
i δk
)∑

h∈K exp (uT
i δh)

, for k ∈ K, (3)

so that Pr (Zi = k| F ,Zi ∈ K) = 1/ |K| = 1/24 is the randomization distribution if (δa, δb, δc, δd) =

(0, 0, 0, 0), that is, if Γ = 1. A convenient feature of (3) is that, if K′ ⊆ K, then

Pr (Zi = k| F ,Zi ∈ K′) =
exp

(
uT
i δk
)∑

h∈K′ exp (uT
i δh)

, for k ∈ K′. (4)

The result in (4) will supply for various K′ ⊆ K a sensitivity analysis for the comparison of

treated and control groups before or after treatment as well as for the difference-in-differences

of outcomes under the single model for treatment assignment in matched sets contained in

(3).

3.2 Sensitivity analysis comparing two of the four groups

Suppose the investigator desires to restrict the comparison to two of the four groups, for

example, group a, treated units in the after treatment period, and group b, treated units

in the before treatment period. Within the matching plan, we have would have produced a

form of matched pairs for this contrast. We could perform an outcome analysis using the I
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matched pair differences between the a and the b responses in the I blocks using Wilcoxon’s

signed rank statistic. With a suitable choice of K′ ⊂ K, the conditional distribution in

(4) reduces to a standard sensitivity analysis model for treated-minus-control matched pair

differences.

If K′ = {k ∈ K : k2 = c, k4 = d} = {acbd, bcad} is the set of |K′| = 2! = 2 treatment as-

signments in which subject j = 2 received treatment c and subject j′ = 4 received treatment

d, then either subject 1 received a and subject 3 received b or else subject 1 received b and

subject 3 received a, so K′ contains the two permutations of a and b among subjects 1 and

3. In this case, (4) gives k = acbd conditional probability Pr (Zi = k| F ,Zi ∈ K′) equal to

Pr (Zi = acbd| F ,Zi ∈ {acbd, bcad}) =
exp (δaui1 + δbui3)

exp (δaui1 + δbui3) + exp (δaui1 + δbui3)
. (5)

Because 0 ≤ δk ≤ γ = log (Γ) for k ∈ {a, b, c, d} and 0 ≤ uij ≤ 1, expression (5) is at most

Γ/ (1 + Γ) and is at least 1/ (1 + Γ). These bounds on (5) are sharp; for instance, the upper

bound of Γ/ (1 + Γ) is attained by δa = γ, δb = 0, ui1 = 1, ui3 = 0.

In general, when K′ = {k ∈ K : kj = c, kj′ = d}, the sensitivity model (5) with bounds

Γ/ (1 + Γ) and 1/ (1 + Γ) is identical to the sensitivity analysis for a matched pair comparison

of two treatments; e.g., Rosenbaum (1987, 2002). Therefore if we reduce the comparison

to any two way comparison, treated–control or before–after, the form of sensitivity analysis

reduces to a standard application of Rosenbaum bounds. In the context of the matching plan

we outline above, a sensitivity analysis may be performed for the two set of matched pairs

(treated-control before treatment; treated-control after treatment) using standard methods.

3.3 Sensitivity analysis for the difference-in-differences

Next, we consider a sensitivity analysis of the DID treatment effect estimate. The DID

treatment effect estimate sums the responses of the two subjects receiving conditions a

and d (treatment and control in the pretreatment period) and subtracts the sum of the
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responses of the two subjects receiving conditions b and c, (treatment and control in the

posttreatment period). For instance, if Zi = dbca then the interaction contrast would be

(Ri4 +Ri1)−(Ri2 +Ri3). Under the null hypothesis of no effect in a randomized experiment,

the values ± |(Ri4 +Ri1)− (Ri2 +Ri3)| would be equally probable, leading to the conven-

tional permutation distribution for Wilcoxon’s signed rank statistic. Next, we consider a

sensitivity analysis that considers the possibility of biased treatment assignment, δ 6= 0 and

how that might change our inference for the DID treatment effect estimate. To that end, we

derive a sensitivity analysis using Expression (4).

LetK1 ⊂ K be the subsetK1 = {abcd, acbd, dbca, dcba} and letK2 = {badc, bdac, cadb, cdab}.

If Zi ∈ K1 then the difference-in-difference contrast for set i would be (Ri1 +Ri4)−(Ri2 +Ri3),

whereas if Zi ∈ K2 then the difference-in-difference contrast for set i would be (Ri2 +Ri3)−

(Ri1 +Ri4). Conditioning on Zi ∈ K1 ∪ K2 ensures the difference-in-difference contrast is

either (Ri1 +Ri4)− (Ri2 +Ri3) or (Ri2 +Ri3)− (Ri1 +Ri4), under H0, the absolute value of

this contrast is fixed. Under (4), the conditional probability that Zi ∈ K1 given Zi ∈ K1∪K2

is

Pr (Zi ∈ K1| F ,Zi ∈ K1 ∪ K2) =

∑
k∈K1

exp
(
uT
i δk
)∑

k∈K1
exp (uT

i δk) +
∑

h∈K2
exp (uT

i δh)
. (6)

If treatment assignment were randomized, then δa = δb = δc = δd = γ = 0 such that (6)

equals 1/2. Next, we derive bounds on the probability of assignment contingent on the value

of γ and uij a possible unobserved binary confounder.

Proposition 3.1 If 0 ≤ δk ≤ γ for each k ∈ {a, b, c, d} and 0 ≤ uij ≤ 1 for all j = 1, 2, 3, 4,

then

1

1 + Γ2
≤ Pr (Zi ∈ K1| F ,Zi ∈ K1 ∪ K2) ≤

Γ2

1 + Γ2
. (7)

Moreover, the upper and lower bounds are sharp, being attained for particular uij and δk with

0 ≤ uij ≤ 1 and 0 ≤ δk ≤ γ.
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Proof. We have Γ2 = exp (2γ). By algebra applied to (6), the inequality (7) is equivalent

to

exp (−2γ) ≤
∑

k∈K1
exp

(
uT
i δk
)∑

h∈K2
exp (uT

i δh)
≤ exp (2γ) . (8)

The elements of K1 and K2 are in 1-to-1 correspondence: for each k = (k1, k2, k3, k4) ∈ K1

there is a unique k′ ∈ K2 formed as k′ = (k2, k1, k4, k3). Moreover, for k′ ∈ K2 corresponding

to k ∈ K1,

uT
i δk − uT

i δk′ = (ui1 − ui2) (δk1 − δk2) + (ui3 − ui4) (δk3 − δk4) . (9)

Subject to 0 ≤ δk ≤ γ for each k ∈ {a, b, c, d} and 0 ≤ uij ≤ 1, expression (9) is at most

2γ and at least −2γ. In other words, each term in the numerator of the ratio in (8) is at

most exp (2γ) times greater than the corresponding term in the denominator, and each term

in the numerator is at least exp (−2γ) times the corresponding term in the denominator,

proving the inequality (8). If ui1 = ui4 = 1, ui2 = ui3 = 0, δa = δd = γ, and δb = δc = 0, then

(9) equals 2γ for each k ∈ K1 and its corresponding k′ ∈ K2, thereby achieving the upper

bound in (8) and hence in (7). The lower bound is analogous.

The results of this proof have two important implications. First, this result implies that

the sensitivity analysis for the DID contrast takes a simple form. Rosenbaum bounds are

calculated by applying a statistic such as Wilcoxon’s signed rank to treated and control

matched pairs. For a given value of Γ, upper and lower bounds for quantities such a p-values

and confidence intervals may be derived for this test statistic. To derive bounds for the DID

contrast, the investigator applies a statistic such as the signed rank, but it is now applied

to the DID contrast: (Yia − Yib) − (Yic − Yid). Bounds at Γ are calculated using the same

set of calculations but with Γ2 replacing Γ. Second, we observe that the DID treatment

effect estimate is actually more sensitive to hidden bias from an unobserved confounder.

This is true since an unobserved confounder can have a larger effect on the interaction
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contrast because it is affected by four rather than two treatment assignments. That is, a

hidden confounder might alter the probability of being assigned to treatment or control, but

also the before and after time period. For example, a bias of the form δa = δd = γ and

δb = δc = 0 could tilt higher responses towards the a and d conditions and away from the b

and c conditions, strongly affecting the interaction contrast. Thus while the DID estimate

protects against the additive distortions model, many other forms of bias are possible.

3.4 A sensitivity analysis assuming an estimable time trend

Next, we develop an additional form of sensitivity analysis based on the assumption that

λt is estimable. If we assume that we can consistently estimate λt, this eliminates hidden

bias due to differential treatment assignments across time periods. Thus, the investigator

may then calculate sensitivity bounds assuming the unobserved confounder only affects the

treated–control contrast in the DID estimate. A sensitivity analysis of this form begs two

questions. The first is how might we estimate λt? The second is whether it is reasonable to

assume we have a consistent estimate for λt? The first question is a fairly mechanical one,

and we outline methods for estimation below. The second is a more substantive question

that depends on judgement, and it is one that must be made by the investigator.

When the outcomes are binary this form of sensitivity analysis is relatively straightfor-

ward. As Zhang et al. (2012) show, a test developed by Gart (1969) for the analysis of

matched proportions in a crossover design, can be directly applied to conduct a sensitivity

analysis for the DID device when outcomes are binary. They demonstrate that by taking

sets of discordant outcome pairs from the matched pairs in the pre-treatment period and the

matched pairs in the post-treatment period, the extended hypergeometric distribution can

be applied to test the sharp null that the DID treatment effect is zero. They also show that

sensitivity bounds can be constructed using Γ2 rather than Γ. This forms the general form

of sensitivity analysis for the DID treatment effect with binary outcomes. However, Gart’s

test assumes a known time trend is zero, thus we can construct sensitivity bounds with a
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known time trend using the extended hypergeometric distribution.

When outcomes are not binary, we estimate λt from the temporal contrast in the control

group. That is, we assume that temporal changes in the control group can be used to remove

bias due to over time changes in the treatment group not attributable to the treatment

itself. We account for λt using the nuisance parameter approach of Berger and Boos (1994).

Specifically, we compute a 1 − β confidence set C for λt based on (Yic − Yid), then we test

H0 : τ = τ0 in the additive distortions model by testing the null hypothesis of no effect on

(Yia − Yib) − τ0 − λ̃t for every λ̃t ∈ C, and increasing the maximum p-value by the addition

of β. This produces a confidence interval for λt, which we denote as [λt−, λt+].

For a given value of Γ, we then calculate two test statistics. The first test statistic, T1,

measures the standardized discrepancy based on (Yia − Yib)−λt+. The second test statistic,

T2, is based on the following contrast: (Yic − Yid) − λt−. Thus we adjust the data by the

smallest and largest plausible values for λt. The upper-bound on the upper-one-sided p-value

for Γ is based the sum of β and the two-sided p-value from the minimum of the lower tail

p-value based on T2 and the upper tail p-value based on T1.

4 A Sensitivity Analysis Plan for Differences-in-Differences

In a DID design, analysts may apply a sensitivity analysis to four different contrasts.

First, one can apply a sensitivity analysis to the treated and control difference before treat-

ment. Second one can apply a sensitivity analysis to the treated and control difference after

treatment. Third, one can apply a sensitivity analysis to the DID contrast, and finally one

can apply a sensitivity analysis to the DID contrast assuming that the time trend can be

estimated from the control group. The question we engage next is which of these sensitivity

analyses should analysts use? Specifically, we outline plan for the application of sensitivity

analysis in the context of a DID design. By plan, we mean a part of the design that outlines

the specific forms of sensitivity analysis that will be applied before outcomes are considered.
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We recommend the following analysis plan. First, analysts should conduct a sensitiv-

ity analysis for the DID contrast, without assumptions about time trends. This sensitivity

analysis is the most conservative, but that conservatism directly arises from the fact that

confounders may after effect either the treated and control contrast or from a shift in the

temporal levels of the outcomes. Reporting any other sensitivity analysis denies the possi-

bility that hidden bias may take some more complex form that is assumed by a DID design.

An analysis may choose to stop the sensitivity analysis at this point. Next, investigator may

choose to report the sensitivity analysis that assumes the time trend is estimable. A critical

point will be to then contrast whether there are clear differences between these two sensitiv-

ity analyses. If both demonstrate that our conclusions can be easily explained by a hidden

confounder then the conclusions are consistent across both methods. If the assumption of a

time trend renders the results less sensitive to hidden bias, then qualitative knowledge about

the defensibility of estimating the trend form the control group should be presented.

Finally, the analyst may ignore the temporal component of the study and report a sen-

sitivity analysis for treated and control contrast in the post-treatment time period. This

contrast makes no assumptions about time trends and after matching is a valid design that

assumes treatment assignment is as-if random conditional on the observed covariates. Next,

we demonstrate these methods using two different empirical applications.

5 Application: Disability Payments in Germany

In the first application, we re-analyze data from a study on whether a change in disability

payment rates in Germany changed sick day usage (Puhani and Sonderhof 2010). In 1995,

Germany changed employment regulations such that workers who were covered by a collective

bargaining contract (unionized workers) had their disability payments reduced from 100%

coverage to 80% coverage. The goal in the original analysis was to understand whether

the change in employment regulation contributed to workers using disability services at
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lower rates. The control group in the analysis is workers that are not covered by collective

bargaining agreements. We focus on one of the outcomes from the original study: the number

of days absent from work.

We begin the analysis with plots of the outcomes for the treated and control groups in

both the before and after period. Simple plots of this type can be useful to assess whether

it appears the temporal path of the treated group appears to deviate from a common trend.

While we observe a clear decline in the number of days absent for the treated, we also observe

a over time change in the control group outcomes in the opposite direction. This pattern

does not suggest that treated and control groups follow a common trend.
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Figure 2: Outcomes for the German Disability Payments

To adjust for observed covariates, we implemented the matching plan outlined above. We

match on the same set of covariates used in the original analysis. These include measures

for hourly wages, age, education levels, blue or white collar status, firm size, length of tenure

with company, and industry. For three nominal covariates, we set fine balance constraints.

Under fine balance, we balance the marginal distribution of a categorical covariate so that

it is exactly the same across the treated and control groups. (Rosenbaum et al. 2007). Fine

balance constraints are not always feasible. One alternative is a near fine balance constraint

which returns a finely balanced match when one is feasible, but minimizes the deviation from

fine balance when fine balance is infeasible (Yang et al. 2012). In our match, we applied near
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fine balance constraints on firm size and length of tenure with one’s employer; we finely bal-

anced industry. The appendix contains a table which reports within pair differences before

and after matching. The matching resulted in 356 matched pairs in the period before treat-

ment went into effect. We implemented the match via cardinality matching, which returns

the largest set of matched pairs that met our pre-specified balance constraints (Zubizarreta

et al. 2014a).

Next, we applied the exact same form of matching to the treated and control units in

the period after the change in disability payments. The match in the post-treatment period

produced 470 matched pairs. Finally, we matched the 356 pairs from the pre-treatment

period to the 470 matched pairs from the post-treatment period. To match pairs to pairs, we

took within pair averages within sets of matched pairs. In this match, we exactly matched

on industry and finely balanced both firm size and length of tenure with company. This

resulted in 336 sets of pairs matched to pairs. Balance tables from both matches are in the

appendix.

The estimated DID treatment effect is -1.57, which implies that reducing disability pay-

ments reduced the average number of days absent from work by just under two days. This

estimate relies on means to calculate the DID contrast, and the distribution for the number

of days absent has a long tail. In case the tails of the distribution overly affect our esti-

mate, we next use Wilcoxon’s signed rank test to estimate the DID treatment effect. The

estimate from the signed rank test is -2, with a one sided p-value of 0.0895, and a 95% CI

of (∞, 0.50). Finally, we also use an M-statistic with Huber’s (1964; 1981) weight function.

In an M-statistic, the observations are transformed to prevent a small number of observa-

tions from having a strong influence on the results. Results based on such M-estimates are

often more resistant to hidden bias (Rosenbaum 2014). We implement M-estimates using

functions from the sensitivitymw package in R (Rosenbaum 2015b,c) with the defaults set

for matched pairs. Using an M-statistic, we reject the sharp null with p = 0.041. The point

estimate under M-estimation is -2.42, with a 95% confidence interval of [−∞, 0.13]. In sum,
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we observe that it appears that a reduction in disability payments reduced the number of

days absent among the treatment group. These estimates, however, assume that a hidden

confounder does not alter the odds of treatment assignment.

Next, we conduct a sensitivity analysis for the DID treatment effect estimate. That is,

we ask whether an unobserved confounder would have to change the odds of treatment by

a small or large amount before our conclusions are reversed. We perform the sensitivity

analysis for both the signed rank statistic and the M-statistic. As we outlined above, we can

apply standard methods for Rosenbaum bounds using Γ2 to calculate sensitivity at Γ. We

begin by placing bounds on the one-sided p-value at Γ = 1.01. For the signed rank statistic,

the upper-bound on the one-sided p-value is 0.13, and for the M-statistic the upper-bound

is 0.05. Thus, in both cases, the estimate is extremely sensitive to bias from a hidden

confounder. A hidden binary confounder would have to change the odds of treatment within

matched pairs of pairs by a mere one percentage point.

We also conduct an additional sensitivity analysis that assumes λt is estimable from the

control group. For this analysis, we only use M-statistics. First, we test the sharp null for the

DID contrast when Γ = 1, and we reject the sharp null (p = 0.02). This result demonstrates

why we recommend that this test not be done in isolation. In this application, reliance on

a dubious assumption indicates a more decisive rejection of the sharp null. For Γ = 1.07,

the upper-bound on the one-sided p-value is 0.045 if we assume the time trend is estimable.

Thus, our conclusions are modestly more resistant to bias from a hidden confounder under

this scenario. However, our conclusions here, rest on the assumption that the over time

change in days absent can be estimated from the control group.

6 Application: Election Day Registration

The method of DID is often used to study the effect of policy changes in subnational

units of government. For example many states in the U.S. allow voters to register to vote on
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election day, unlike many other states which require that voter registration to be completed

at least 2-4 weeks before election day. A number of studies have concluded that EDR has

contributed to an increase in voter turnout. (Brians and Grofman 1999, 2001; Hanmer

2007, 2009; Highton and Wolfinger 1998; Knack 2001; Mitchell and Wlezien 1995; Rhine

1995; Teixeira 1992; Timpone 1998; Wolfinger and Rosenstone 1980). However, recent works

suggest these studies are subject to substantial bias from hidden confounders (Keele and

Minozzi 2012). As an illustration, we conduct a small scale study of EDR. In our application,

we focus on Wisconsin, one of the first states to adopt EDR, and where the effect of EDR is

widely understood to have contributed to an increase in turnout (Hanmer 2009).

The data are extracts from the 1972 and 1980 Current Population Survey (CPS) and are

a subset of the data from Keele and Minozzi (2012). The CPS is a monthly individual level

survey conducted by the U.S. census which asks respondents about voting in the November

survey of election years. Wisconsin first used EDR in 1976, and we use turnout in the 1980

presidential election as the post-treatment period in case of any delay in the effect of EDR.

We use voters from Illinois as controls. Illinois would seem to be a reasonable counterfactual

for Wisconsin, as it is adjacent to Wisconsin and both have large metropolitan areas with

minority communities but also have large rural populations as well.

As before, we begin with a plot of the turnout rates in both states. Figure 3 contains the

turnout before and after the implementation of EDR in Wisconsin for both states. First,

we observe a sharp increase in turnout in Wisconsin in 1980, which suggests that perhaps

EDR did increase turnout in the state. However, the plot suggests that some other factor

or factors contributes to a sharp decrease in turnout in Illinois between 1972 and 1980. As

such, while Illinois appears to be a reasonable counterfactual in 1972, turnout in both states

does not appear to follow a common trend.

We begin the analysis by matching Wisconsin residents to Illinois residents, first in 1972,

and then again in 1980. We match residents on age, an indicator if he or she is African

American, female, a categorical scale of education, a categorical scale of income, and an
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Figure 3: Outcomes for the EDR Example. Before Year is 1972, After Year is 1980.

interaction between education and income categories. In our match, we matched exactly on

whether a resident was African-American, and we applied near fine balance to education,

income, and the interaction between education and income categories. We allowed for a

deviation of two categories on the near fine balance in the match. After matching in 1972,

we have 1427 matched pairs. After matching in 1980, we have 1718 matched pairs. We then

performed the pair-to-pair match, where we matched the pairs from 1972 to pairs from 1980.

Imbalances tended to be much larger across the two time periods than within each year. For

the pair-to-pair match, we again applied cardinality matching. We are left with 938 matched

pairs from 1972 matched to 938 matched pairs from 1980. Table 1 contains the results after

the matching was completed. The upper part of Table 1 contains cross-tabulations of the

outcomes for the matched pairs from 1972 and 1980. For each set of matched pairs, the

table counts concordant and discordant outcomes—the number of discordant pairs are in

the off-diagonal cells. For example, in 1972, there are 159 paired residents who voted in

Wisconsin but did not vote in Illinois. To test Fisher’s sharp null in either 1972 or 1980, we

would apply McNemar’s test individually to each of these two tables. Our interest, however,

is in testing the sharp null for the DID treatment effect. To test, the sharp null for the
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DID treatment effect, we form a second table composed of the discordant pairs from the

matches in 1972 and 1980. The lower part of Table 1 contains this new contingency table of

discordant pairs. To this table, we apply Gart’s test based on the extended hypergeometric

distribution. Based on this test, the sharp null hypothesis is implausible (p < 0.001), though,

of course, this test assumes there are no hidden confounders present.

Next, we seek to characterize the magnitude of the EDR effect. One simple method for

summarizing the effect of EDR is to simply calculate the odds-ratio using the lower table in

Table 1. The estimated odds ratio is 1.79, which indicates that the presence of election day

registration increase the odds of voting by 79%. Alternatively, we could simply calculate

the DID treatment effect by taking the DID contrast in proportions for the matched groups.

According to to this estimate, the turnout rate increased 12.6 percentage points in Wisconsin

as compared to Illinois. Compared to most interventions designed to increase voter turnout,

this is a very large treatment effect. However, this estimate assumes that there is no bias

from hidden confounders. Next, we turn to a sensitivity analysis to explore how sensitive

the results are due to bias from a hidden confounder.

Table 2 contains the results from two different sensitivity analyses. The first makes no

assumptions about λt, the nuisance time trend. Here, the sensitivity bound is calculated

using the extended hypergeometric distribution using Γ2. We find that the one-sided p-

value is 0.05 when Γ = 1.18. This implies that an unobserved confounder could reverse our

conclusions if it affect the odds of assignment to treatment or control in either time period

by 18%. It is important to understand that this confounder could be correlated with a higher

chance of being exposed to EDR or correlated with a change in the likelihood of voting over

time. In the next sensitivity analysis, we assume that we can consistently eliminate bias from

the effect of the confounder on over time changes in the likelihood of voting. In this instance,

we again calculate the sensitivity analysis using the extended hypergeometric distribution,

but we use Γ instead of Γ2. Under this form of sensitivity analysis, the one-sided p-value is

0.05 when Γ = 1.39.
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The EDR application makes an important case for the use of sensitivity analysis when

investigators use the DID device. The estimates reported above, would appear to make a

convincing case for the causal hypothesis that EDR increased turnout in Wisconsin. The

point estimate is large, and the p-value is well below the usual 0.05 threshold at 7.14 ×10−5.

These estimates rest on the assumption that confounder do not affect the odds of treatment

assignment. The sensitivity analysis, however, reveals that a hidden confounder could easily

explain these results, and thus serves as important check on the plausibility of the causal

hypothesis.

Table 1: Cross-tabulation of outcome pairs for Election Day Registration in Wisconsin after
matching.

1972 1980
Illinois Illinois

Didn’t Vote Voted Didn’t Vote Voted

Wisconsin
Didn’t Vote 51 161 98 150
Voted 159 567 266 424

1980 1972

Wisconsin
Voted/Didn’t Vote 266 159
Didn’t Vote/Voted 150 161

Odds ratio 1.79
95% Interval [1.32, 2.44]
p-value 7.14 ×10−5

7 Discussion

The method of DID is widely used to estimate causal effects. The two applications we

present are emblematic of areas where DID is used. The first is a change in labor laws in

Germany, and the second is a change in election laws in the United States. Under this device,

the hope is that the configuration of the bias from unobserved confounders has a specific

additive form that can be eliminated when the investigator obtains data from treated and

control groups before and after a treatment goes into effect. Here, we derived the hypothetical
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Table 2: Sensitivity Analysis for the EDR Application. The table gives the upper bound on
the one-sided p-value for the testing the null effect of EDR on voter turnout.

Sensitivity Analysis Sensitivity Analysis
Γ with Unknown Trend with Estimable Trend

1.00 0.00 0.00
1.05 0.00 0.00
1.10 0.01 0.00
1.15 0.03 0.00
1.18 0.05 0.00
1.25 0.20 0.01
1.30 0.37 0.02
1.39 0.71 0.05

experiment on which the DID effect is based, as well as plan for covariate adjustment based

on matching. Covariate adjustment based on matching makes much weaker functional form

assumptions than the usual methods based on regression models. Next, we outlined two

methods of sensitivity analysis that differ in terms of the assumptions the investigator is

willing to invoke about time trends. Importantly, the sensitivity analysis is easy to implement

using existing methods and software, and reveals how an unobserved confounder can change

the odds of treatment assignment through two different paths.

Finally, we think it is worth emphasizing that there is typically nothing haphazard or

as-if random about treatment assignment in most applications that use DID. It if for this

reason that we refer to DID as a device and not type of natural experiment. The plausibility

of designs that employ the DID device should be judged based on the assignment process

and how well it can be modeled rather by the fact that is it possible to use the DID device.

In both of the applications analyzed here, policy-makers made these changes for reasons

that are far from random or haphazard. A useful contrast is between the DID device and

the regression discontinuity (RD) design. In an RD design, a known treatment assignment

rule is applied and respected. The strength of RD designs comes directly from the use

and application of this known assignment rule (Lee and Lemieux 2010). Under DID, the

treatment assignment rule is typically far more ambiguous leading to far more ambiguous
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conclusions.
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Appendices

A.1 Balance Tables for First Application

Table 3: Standardized Differences and p-values for Treated to Control Match in the Pre-
treatment Period for the Disability Payments Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Regional Unemp. 0.19 0.00 -0.00 0.97
Hourly Wage -0.04 0.51 0.07 0.39
Age -0.10 0.09 -0.03 0.71
Married -0.02 0.70 -0.02 0.76
Female -0.01 0.82 -0.04 0.60
Children Under 16 -0.03 0.62 -0.05 0.50
Female & Child Under 16 0.03 0.64 -0.02 0.79
Female & Married 0.02 0.67 -0.01 0.93
Education -0.00 0.96 -0.01 0.90
Temporary Contract -0.04 0.48 0.01 0.88
Blue Collar -0.04 0.44 -0.02 0.82
White Collar 0.15 0.01 0.02 0.82
Civil Servant -0.28 0.00 0.00 1.00
German 0.04 0.52 0.02 0.84
West German -0.22 0.00 -0.02 0.81
Satisfaction w Health 0.00 0.99 -0.08 0.27
Self-Reported Health Status 0.07 0.21 0.12 0.11

A.2 Balance Tables for Second Application
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Table 4: Standardized Differences and p-values for Treated to Control Match in the Post-
treatment Period for the Disability Payments Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Regional Unemp. 0.12 0.02 0.01 0.88
Hourly Wage -0.10 0.06 0.07 0.26
Age 0.01 0.86 0.11 0.11
Married 0.05 0.34 0.06 0.34
Female 0.03 0.55 0.04 0.55
Children Under 16 0.10 0.04 0.02 0.79
Female & Child Under 16 0.18 0.00 0.02 0.76
Female & Married 0.09 0.09 0.03 0.61
Education -0.00 0.99 -0.04 0.51
Temporary Contract 0.10 0.08 0.10 0.11
Blue Collar -0.02 0.77 -0.02 0.79
White Collar 0.12 0.02 0.02 0.79
Civil Servant -0.24 0.00 0.00 1.00
German -0.08 0.12 -0.02 0.73
West German -0.17 0.00 -0.02 0.78
Satisfaction w Health -0.02 0.62 -0.00 0.97
Self-Reported Health Status 0.02 0.64 0.05 0.41
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Table 5: Standardized Differences and p-values for Pair-to-Pair Match in the Disability
Payments Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Regional Unemp. 0.06 0.40 -0.02 0.76
Hourly Wage -0.28 0.00 -0.05 0.48
Age -0.07 0.30 0.04 0.58
Married -0.11 0.13 -0.03 0.71
Female 0.06 0.41 0.02 0.81
Children Under 16 -0.09 0.21 -0.04 0.65
Female & Child Under 16 -0.07 0.31 -0.05 0.52
Female & Married -0.05 0.49 -0.04 0.64
Education 0.12 0.09 -0.02 0.82
Temporary Contract 0.13 0.06 0.05 0.54
Blue Collar 0.08 0.24 -0.02 0.84
White Collar -0.08 0.27 0.02 0.84
Civil Servant -0.02 0.81 0.00 1.00
German 0.06 0.36 0.06 0.47
West German -0.05 0.48 0.01 0.89
Satisfaction w Health 0.21 0.00 0.05 0.47
Self-Reported Health Status -0.04 0.53 0.04 0.60

Table 6: Standardized Differences and p-values for Treated to Control Match in the Pre-
treatment Period for the Election Day Registration Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Age 0.00 0.98 -0.05 0.19
African-American -0.31 0.00 0.04 0.13
Female -0.01 0.72 -0.04 0.28
Education 0.07 0.02 -0.05 0.20
Income 0.02 0.52 -0.05 0.18
Education X Income 0.07 0.02 0.05 0.19
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Table 7: Standardized Differences and p-values for Treated to Control Match in the Pre-
treatment Period for the Election Day Registration Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Age -0.06 0.04 0.05 0.15
African-American -0.24 0.00 -0.04 0.13
Female -0.01 0.77 0.04 0.25
Education 0.17 0.00 -0.05 0.23
Income 0.11 0.00 0.05 0.17
Education X Income 0.16 0.00 -0.05 0.19

Table 8: Standardized Differences and p-values for Treated to Control Match in the Pair-to-
Pair Match for the Election Day Registration Application

Before Matching After Matching

Std Dif P-val Std Dif P-val

Age 0.18 0.00 -0.05 0.29
African-American -0.05 0.15 -0.07 0.12
Female 0.10 0.00 -0.02 0.67
Education -0.27 0.00 0.05 0.28
Income -1.27 0.00 -0.05 0.15
Education X Income -1.10 0.00 -0.05 0.18
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