
Generalized Structural Mean Models for
Evaluating Depression as a Post-treatment

Effect Modifier of a Jobs Training
Intervention∗

Alisa Stephens† Luke Keele‡ Marshall Joffe§

July 7, 2016

Abstract

In randomized controlled trials, the evaluation of an overall treatment effect is often
followed by effect modification or subgroup analyses, where the possibility of a different
magnitude or direction of effect for varying values of a covariate is explored. While
studies of effect modification are typically restricted to pretreatment covariates, longi-
tudinal experimental designs permit the examination of treatment effect modification
by intermediate outcomes, where intermediates are measured after treatment but be-
fore the final outcome. We present a novel application of generalized structural mean
models (GSMMs) for simultaneously assessing effect modification by post-treatment
covariates and accounting for noncompliance to assigned treatment status. The pro-
posed approach may also be used to identify post-treatment effect modifiers in the
absence of noncompliance. The methods are evaluated using a simulation study that
demonstrates that our approach retains consistent estimation of effect modification
by intermediate variables that are affected by treatment and also predict outcomes.
We illustrate the method using a randomized trial designed to promote re-employment
through teaching skills to enhance self-esteem and inoculate job seekers against setbacks
in the job search process. Our analysis provides some evidence that the intervention
was much less successful among subjects that displayed higher levels of depression at
intermediate post-treatment waves of the study. We also compare the assumptions of
our approach and principal stratification as alternatives to account for differences in
effects by intermediate variables.
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1 The JOBS II Study and Effect Modification

Evaluation is an important aspect of policy interventions such as job-training programs.

Here, we evaluate the JOBS II Intervention Project developed at the University of Michigan

and designed to enhance the reemployment prospects of unemployed workers (Vinokur et al.

1995). The intervention aimed to teach unemployed workers skills related to searching for

employment such as the preparation of job applications and resumes and how to successfully

interview. An additional focus of the intervention, however, was on the mental health aspects

of the job search process. This component of the training included activities to enhance self-

esteem, increase a sense of self-control, and cope with set-backs. These skills were taught to

help job-seekers maintain motivation and persist in the job-search process.

Of the sampled workers, the researchers randomly assigned 1249 to the job search seminar

(treatment) and 552 to the control condition, which consisted of a short pamphlet on job

search strategies. Workers assigned to the treatment condition attended a 20-hour job search

seminar over one week. Follow-up interviews were conducted 6 weeks, 6 months, and 2

years after the intervention. We focus on whether the intervention increased re-employment.

Unlike the original analysis, we also examine how covariates measured post-treatment might

be used to better evaluate the effectiveness of JOBS II. We conduct two different analyses

based on post-treatment covariates.

Many previous analyses have focused on intention-to-treat (ITT) effects of participation

in JOBS II (Vinokur et al. 1995; Vinokur and Schul 1997; Imai et al. 2010a; Jo 2008)

(though see Jo and Vinokur (2011); Little and Yau (1998); Mattei et al. (2013) exceptions).

While ITT effects are important, there are other relevant causal quantities when there is

noncompliance. In JOBS II only 61% of those assigned to the intervention actually attended

the training seminars, while those assigned to control could not access the treatment. It

is therefore relevant to focus on whether the intervention was efficacious among those who

actually attended the job search seminar, which requires conditioning on post-treatment
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information (Robins 1994; Angrist et al. 1996).

In addition to accounting for noncompliance, we also evaluate post-treatment effect modi-

fication, an understudied use of post-treatment covariates in the analysis of randomized trials.

In a randomized study of treatments, effects may be heterogenous, observed as an interac-

tion between a treatment and an effect modifying covariate such that the average treatment

effect varies across values of the covariate. For example, we can consider treatment effects

that vary by covariate-defined subpopulations such as sex or race. While analyses with effect

modification by a pretreatment covariate are relatively common, it is also possible for ef-

fect modification to occur as a function of a post-treatment covariate. In many randomized

studies, data on post-treatment or intermediate covariates, defined as variables measured

post-intervention but prior to the study endpoint, are often collected. For example in JOBS

II, after treatment, intermediate measures were collected at time intervals such as six weeks

and six months after treatment, whereas the final outcome measures were collected two years

later. In such designs, we may suspect that the treatment effect may vary across levels of a

covariate measured after the treatment but before the final outcome.

There are several reasons to consider the possibility of effect modification by a post-

treatment variable. First, post-treatment effect modification can be used for intermediate

decision making if the trial is ongoing. Analysts could use the model to identify subgroups for

whom the treatment is particularly ineffective and a new intervention might be implemented.

Second, results from an analysis of this form could also be used as a method for hypothesis-

generation and the design of future interventions. Third, the model might be combined

with other identification strategies to show a consistent pattern of associations in support

of a causal hypothesis. Keele (2014) provides one example where post-treatment effect

modification is used as an alternative identification strategy to instrumental variables. In

that example, similar conclusions from alternative identification strategies are used to bolster

a single causal hypothesis.

Post-treatment effect modification is an important but yet unstudied aspect in JOBS II.
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In designing the study, effect modification by pretreatment levels of depression was of par-

ticular concern. As a result 520 unemployed workers were excluded from the overall sample

of eligible subjects prior to randomization since they displayed a clinically significant level

of depression (Vinokur et al. 1995). This exclusion allowed the researchers to apply the in-

tervention to the subpopulation in which it would be most effective. While job loss is known

to induce depression, the original study did not consider that re-employment failures—failed

interviews, a lack of call backs—may also increase levels of depressive symptoms. If re-

employment failures elevated levels of depression after the intervention, the effectiveness of

the treatment for this subpopulation may be reduced. We use a model of post-treatment

effect modification to estimate whether post-treatment levels of depression reduced the ef-

fectiveness of the treatment.

In our analysis, we adopt the framework of potential outcomes to define causal effects

based on comparisons of potential outcomes on a common set of units (Rubin 1974, 1978).

Our primary estimand is the causal odds ratio among the treated within subgroups defined

by post-treatment levels of depression. We show how our estimand may be characterized as

an example of single potential outcome stratification under the principal stratification (PS)

framework considering depression levels among those assigned to treatment (Joffe et al.

2007). A key contribution of our analysis is exploring and outlining identifiability conditions

for this estimand. We use generalized structural mean models (GSMMs) for binary outcomes

and a modified G-estimation procedure to estimate the post-treatment effect modification

of the causal odds ratio among compliers (Vansteelandt and Goetghebeur 2003). While

additive SMMs have been applied to post-treatment effect modification (Dunn and Bentall

2007), we adapt them to allow for estimation in the odds-ratio scale.

Our paper has the following structure. Section 2 provides basic descriptive statistics and

some preliminary analyses. Section 3 outlines our notation, describes our causal estimand,

states identifiability conditions. In Section 4, we detail the estimation procedure. Section

5 evaluates the properties of the two-parameter logistic GSMM for post-treatment effect
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modification through a simulation study. Section 6 presents estimates of post-treatment

effect modification of causal effects in JOBS II. Section 7 includes discussion and concluding

remarks.

2 Descriptive Summaries and Preliminary Analyses

For all subjects in the JOBS II study, researchers collected covariates prior to treatment

assignment. Baseline covariates include education, income, sex, age, occupation, race, risk

for failure, level of economic hardship, and a measure of depressive symptoms. The primary

outcome of interest is a binary indicator for whether subjects were employed 20 or more hours

per week at the two year follow-up period. We use all units from the original sample with

nonmissing values at baseline and at intermediate data collection time points. The intent-

to-treat (ITT) analysis reveals that the odds of success in the treatment arm as compared

to the control arm is 1.49 with a 95% confidence interval (1.10, 2.01). This implies that

for those assigned to treatment the odds of re-employment were 49% higher. In ignoring

noncompliance, the ITT estimate speaks to program effectiveness but not efficacy. We

address the question of efficacy below.

Next, we examine whether levels of depression appeared to be elevated at post-treatment

follow-up periods. Depressive symptoms were measured with a scale of 11 items from the

Hopkins Symptom Checklist with scores ranging from 0 to 6.0. A score of 3.00 or greater

on the depression index was considered to be a clinically significant indication of depression.

As we noted above, subjects with scores of 3 or more were excluded from the JOBS II study

prior to randomization. We re-scaled the depression scale to range from 0 to 100, which aids

interpretation. On this scale, subjects with a score of 50 or higher were removed from the

study. Figure 1 contains box plots of depression scores at baseline and the two follow-up

periods. The measure of depression in the plot excludes all subjects who were removed due

to a high level of depressive symptoms at baseline. While the median level of depression

decreases at the follow-up periods, for some subjects, levels of depression are elevated well
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above the 50 point threshold which indicates a clinically significant level of depression in the

post-treatment periods. Here, we examine whether the intervention was less effective among

subjects with higher levels of post-treatment depression.
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Figure 1: Levels of depression at baseline, the six week, and six month follow up. Scores
above 50 are considered to be a clinically significant indication of depression.

3 Estimand and Identification Conditions in the Anal-

ysis of JOBS II

Next, we describe the causal estimand of interest in the analysis of the JOBS II trial using

potential outcomes structural mean models (SMMs). SMMs were developed for the analysis

of randomized trials with noncompliance (Robins 1994), but provide a general structure

for estimating the effect of post-randomization exposures (Vansteelandt and Goetghebeur

2004; Vansteelandt 2010). We also outline the assumptions needed for identification of

our estimand, since under both noncompliance and post-treatment effect modification, we

condition on post-treatment quantities. Rosenbaum (1984) demonstrates that conditioning

on post-treatment covariates may result in biased estimates of the causal parameter. We
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examine the identifiability conditions for post-treatment effect modification in detail since

identification assumptions under noncompliance are well-known. We conclude this section

with a detailed discussion of our estimand within the PS framework (Frangakis and Rubin

2002).

3.1 Causal Estimand and Initial Assumptions

In JOBS II, subjects (i = 1, . . . , n) are randomly assigned to either treatment (Ri = 1) or

control (Ri = 0). Covariates Xi = (X1, . . . , Xk) are measured at baseline prior to randomiza-

tion, including age, race, and baseline depression. We define post-treatment effect modifiers,

Si, as the set of intermediate covariates observed after treatment but prior to the outcome,

also possibly multivariate. In our application, we focus on a single potential post-treatment

effect modifier: level of depressive symptoms which we denote by Si. Further, to reflect the

choice by subjects to comply with their treatment assignment, we denote actual exposure to

the treatment by Ai. In JOBS II, those assigned to control did not have access to the train-

ing sessions in the intervention condition. Therefore when Ri = 0 then Ai = 0. Conversely,

if Ri = 1, then Ai = 1 if subject i complies with treatment assignment and attends the job

training seminars, and if Ai = 0, the subject does not comply with treatment assignment

and does not attend. The observed response, denoted by Yi and which follows self-selected

exposure Ai, is an indicator of employment of 20 hours or more per week. The temporal

order of observed variables is Xi, Ri, Ai, Si, Yi.

One common way to define causal effects is in terms of counterfactual or potential out-

comes (Neyman 1923; Rubin 1978; Holland 1986). Under the potential outcomes framework,

Yir,a, is the potential outcome when Ri = r and Ai = a. To estimate the causal effect of

the JOBS II intervention on employment, we would like to compare how each subject would

respond under treatment to his or her response under the control condition. The potential

outcome under no treatment is Yir,0, and it indicates a treatment-free response that would

have been observed if, perhaps counter to fact, subject i had not received treatment. We
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further define Ai,r and Si,r,Ai,r
as potential outcomes of treatment exposure and intermediate

depression under treatment assignment Ri = r.

Next, we stipulate a set of assumptions for identifiability of the effect of Ai. First, we

assume that the SUTVA holds (Rubin 1986) which has the two following components: 1)

there are no hidden forms of treatment, which implies that for unit i under Ri = r and

Ai = a, we assume that Yir,a = Yi and 2) a subject’s potential outcome is not affected

by other subjects’ exposures. The first component of SUTVA is often referred to as the

consistency assumption in the epidemiological literature. Schwartz et al. (2012) contains a

discussion of the relationship between these forms of assumptions.

We assume the exclusion restriction holds which states that Yi1,0 is equal to Yi0,0, and

we denote Yi0 = Yi1,0 = Yi0,0 (Angrist et al. 1996). The exclusion restriction implies that

being invited to the job training seminar has no direct effect on the odds of re-employment

two years later. It seems plausible that being invited to a training seminar itself does little

to change the probability of re-employment other than through actual participation in the

seminar. We assume that the treatment assignment is ignorable, defined as independence

between the treatment assignment and potential outcomes under no treatment. In JOBS

II, this assumption is justified by the randomized design. Formally, this restriction can be

expressed as

Yi0 ⊥ Ri|Xi (1)

Further, we assume the ”no-contamination” restriction, defined as the absence of off-protocol

use of the intervention among controls, such that P (Ai = 0|Ri = 0) = 1 (Cuzick et al.

2007). This assumption is justified by the design since control subjects could not access the

intervention. The no contamination restriction implies the no current treatment interaction

assumption for SMMs, which states that the causal effect of the intervention is identical

among subjects who actually took it, regardless of assigned treatment (Hernán and Robins

2006), since it reduces the number of causal effects to one among those assigned to the

intervention. The causal effect among those assigned to control can never be estimated,
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so the underlying data-generating mechanism remains agnostic about the existence of the

interaction under unrestricted designs (Clarke and Windmeijer 2010; Robins 1994). We also

assume that Ri has a nonzero causal effect on Ai. These assumptions will identify the effect

of Ai on Yi and are equivalent to the usual instrumental variables assumptions (Angrist et al.

1996). We consider further assumptions to identify effect modification later.

To ease exposition, we denote two changes to the notation. First, we drop the index

i, since throughout we assume all quantities are indexed by individual participants in the

JOBS II trial. Second we denote Ar=1 as A1. That is, A1 represents the potential compliance

status under fixed treatment assignment R = 1. We also simplify S1,A1 , the potential level

of depression for a potential compliance status with fixed treatment assignment R = 1, to

SA1 and define YA1 similarly. In our application, we focus on treatment effect modification

by SA1 . Specifically, we consider the following form of effect modification by SA1 where if

for some s not equal to s′

E[YA1 − Y0|SA1 = s, R = 1] 6= E[Y1 − Y0|SA1 = s′, R = 1]. (2)

In JOBS II, the primary outcome of interest is binary, so we focus on effect modification by

SA1 the logistic SMM (Robins et al. 1999), which models the log-causal-odds of employment

vs. unemployment among subjects randomized to treatment as a function of exposure and

covariates. Under the logistic SMM, our estimand is the causal odds ratio

exp(ψ) =
P (Y = 1|SA1 , A1, R = 1,X)

P (Y = 0|SA1 , A1, R = 1,X)

/
P (Y0 = 1|SA1 , A1, R = 1,X)

P (Y0 = 0|SA1 , A1, R = 1,X)
. (3)

which we allow to vary across SA1 . Under a set of appropriate identification conditions, we

may obtain estimates of the estimand using the following model

logit{P (Y1 = 1|SA1 , A1, R = 1,X)} − logit{P (Y0 = 1|SA1 , A1, R = 1,X)} =

η′s(A1, SA1)ψ0 = f1(A1;ψ01) + f2(A1, SA1 ;ψ02), (4)
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where ψ represents the unknown causal parameter, with the truth denoted by ψ0, and η′s(·)

is a function of potential outcomes SA1 and A1 with dimension equal to that of ψ. We use

the subscript ’s’ to indicate that this is a structural model, since it refers to counterfactual

quantities instead of observed associations in the data. In Equation (4) the structural model

is comprised of arbitrary known functions f1(·) and f2(·) up to an unknown p-dimensional

parameter ψ0 = (ψ01, ψ02), where p = dim(ψ01) + dim(ψ02). When ψ0 = 0 or A1 = 0 we

assume f1(ψ01) = f2(S1;ψ02)=0 to indicate no effect of treatment, and for SA1 or ψ02 = 0,

we assume f2(Si;ψ02) = 0. We condition on Xi but by assumption we rule out structural

models of the form η′s(A1,Xi) = (A1, A1Xi)
′. This is discussed in further detail in section

3.2.

As an example, consider the case when f1(ψ01) = ψ01A1 and f2(ψ02) = ψ02A1SA1 . For

ψ02 = 0, the causal odds ratio is quantified by exp(ψ01) for all subjects, implying no effect

heterogeneity. When ψ02 6= 0, exp(ψ01) is the causal odds ratio among the subset of subjects

with SA1 = 0, and when ψ02 6= 0, the causal odds ratio for subjects with SA1 = s is captured

by exp(ψ01 + ψ02s), which allows the effect of A1 to vary with the counterfactual SA1 .

Joffe et al. (2007) show that models like (4) were discussed as models with a single

potential outcome stratification, in contrast with a principal stratification approach, which

considers a stratification on joint potential outcomes under r = 0, 1. We show in section 3.2

that model (4) is equivalent to the model

logit{E[Yi|Si, Ai, Ri = 1,Xi]} − logit{E[Yi0|Si, Ai, Ri = 1,Xi]} =

η′s(Ai, Si)ψ0 = f1(Ai;ψ01) + f2(Ai, Si;ψ02), (5)

which stratifies on the observed auxiliary variable Si (Joffe et al. 2007), and falls under

the class of Retrospective Structural Mean Models (RSMMs). RSMMs are characterized

by exposure effects defined conditional on variables observed subsequent to treatment, in

contrast with standard structural mean models (Robins 1994), which define causal effects
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as a function of covariates observed prior to treatment. Vansteelandt (2010) also considered

retrospective models for assessing mediation when outcomes are binary and modeled using

a logit link.

Alternatively, we could use a linear SMM, which models mean differences linearly in

exposure and covariates under an identity link. For positive outcomes, we might apply

the log link to estimate the causal risk ratio. When mean outcomes are close to 1, either

marginally or conditionally within subgroups, modeling binary outcomes using the identity

or log link may result in predicted mean outcomes that are out of range, which can cause

nonconvergence or falsely reported convergence in estimation routines. The logistic SMM

allows for general binary outcomes that may be common or rare.

We might compare the causal odds ratio in Equation (3) to a more familiar one

P (Y = 1|A1, Ri = 1,X)

P (Yi = 0|A1, R = 1,X)

/
P (Y0 = 1|A1, R = 1,X)

P (Y0 = 0|A1, R = 1,X)
, (6)

which only allows effect modification by X. For this estimand, the structural model would

be rewritten as η′s(A1,X)ψ. Structural models of this type admit the possibility that causal

odds ratio is not constant over different strata of X. The distinction between Equations (3)

and (6) are made clearer in the following section where we consider questions of identifiability.

Finally, we could also consider an alternative form of effect modification

E[YA1 − Y0|SA1 − SA0 = s, R = 1] 6= E[Y1 − Y0|SA1 − SA0 = s′, R = 1] (7)

This second form of effect modification allows for the effect of the intervention to vary by

SA1 − SA0 instead of SA1 . Under this second form of effect modification, we would seek to

answer whether the intervention is more or less effective among those whose intermediate

levels of depression are affected by exposure to the intervention. Under the form of effect

modification in 2, we are attempting to understand whether the intervention was less effective

with increasing depression levels under treatment.
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Under a simplified setting without noncompliance, effect modification of the type in (2)

may be captured by the model

E[Y1 − Y0|S1, S0,X, R = 1] = γ1R + γ2RS1,

whereas effect modification of the type in (7) may be modeled by

E[Y1 − Y0|S1, S0,X, R = 1] = γ1R + γ2R(S1 − S0).

These models are nested in the following more general model

E[Y1 − Y0|S1, S0,X, R = 1] = γ1R + γ2RS1 + γ3RS0, (8)

which suggests that a test for the appropriateness of other model may be conducted by eval-

uating the hypothesis that γ3=0. In applications where the intermediate variable S is only

defined among the treated, these models are equivalent. Dunn and Bentall (2007) consider

effect modification of this type where the intervention is assignment to therapy and the effect

modifier is attachment to the therapist. Since controls patients do not receive therapy, they

cannot form an attachment to a therapist. See (Follmann 2006) for an additional example

of this type in vaccine trials.

When the effect modification variable occurs in both treatment arms and varies both

under intervention and control, as it does in the JOBS II application, choosing between these

two models will depend on subject matter knowledge. We argue that effect modification of

the form in (2) is more relevant when interest focuses on the level of the effect modifier

rather than the difference in the effect modifier caused by the intervention. As we noted

above, the eligibility criteria for JOBS II excluded otherwise eligible subjects that had high

levels of depression at baseline because the intervention was less likely to be effective among

them. Given this, we focus on the levels of depression achieved under treatment as the effect
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modifier. Moreover, model (8) can only be identified under additional parametric modeling

assumptions beyond those we use for identification.

3.2 Identifiability Under Post-treatment Effect Modification and

Noncompliance

We next consider the identifiability of SMMs with post-treatment effect modification, since

identification of treatment effects for those who complied with the JOBS II holds given

the assumptions stated thus far. We address identifiability under a theorem presented by

Vansteelandt and Goetghebeur (2004) in the context of Strong Structural Mean Models.

First, we consider the following model that parameterizes the odds ratio (6), under a single

binary pre-treatment effect modifier Xi,

logit{E(Y |A1, R = 1, X)} − logit{E(Y0|A1, R = 1, X)} = ψ01A1 + ψ02A1X (9)

This model is nonparametrically identified in the sense of Robins (1997) under the assump-

tions in Section 3.1. The log odds ratio in Equation (9) is uniquely defined in terms of ob-

servable quantities given the ignorability assumption, the consistency component of SUTVA,

the no-contamination assumption, and equivalence between E[Y |A1 = 0, R = 1, X] and

E[Y0|A1, R = 1, X] under the exclusion restriction.

We contrast the model in Equation (9) with an example of Equation (4) as given by:

logit{E(Y |SA1 , A1, R = 1, Xi)} − logit{E(Y0|SA1 , A1, R = 1, Xi)} =

ψ01A1 + ψ02A1SA1 (10)

using a single binary potential post-treatment effect modifier SA1 . Nonparametric identifica-

tion for the above model does not hold since there are four possible nonzero effects defined

by joint levels of X, and SA1 , but the exchangeability assumption allows identification of

only two parameters. Generally, nonparametric identifiability does not hold for models of
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this form, since the number of strata jointly defined by the baseline covariate, X, and po-

tential intermediate, SA1 , is greater than the number of restrictions imposed by our stated

assumptions (Vansteelandt and Goetghebeur 2004).

To achieve model-based identification of effect modification by SA1 , we must place a

restriction on the number of A1X interactions in the structural model for the effect of

treatment on outcomes. To derive the model-based identifiability conditions, we consider

the marginal treatment effect ∆x, marginalizing over SA1 and A1X. Examination of the

marginal treatment effect reveals how identification depends on observed-data constraints.

∆x =
∑
a

{∑
s

{logit(E[Y |SA1 , A1, R = 1, X])− logit(E[Y0|SA1 , A1, R = 1, X])} × (11)

P (SA1 = s|A1, R = 1, X)

}
× P (A1 = a|X,R = 1)

=
∑
a

{∑
s

πsax(ψ01a+ ψ02as) = π1ax(ψ01a+ ψ02a) + π0ax(ψ01a)

}
P (A1 = a|X,R = 1)

= 0 + p1x(ψ01 + π11xψ02),

where p1x ≡ P (A1 = 1|X,R = 1) and πsax ≡ P (SA1 = s|A1 = a,X = x,R = 1). Equation

(11) involves two equations in two unknown quantities, ψ01 and ψ02, and has a unique solution

so long as Xi predicts p1x or π11x and thus identifiability holds under the model. In sum,

model-based identification holds if we restrict the number of interactions between treatment

assignment and baseline covariates on the outcome in the structural model. Without this

assumption, the model in Equation (10) and the following model

logit{E(Y |SA1 , A1, R = 1, Xi)} − logit{E(Y0|SA1 , A1, R = 1, X)} =

ψ01A1 + ψ02A1X

may fit the data equally well (Vansteelandt and Goetghebeur 2004). The essence of the

identifiability problem is that since SA1 is unobserved we are forced to increase the number
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of observed-data constraints to identify the model, which is accomplished by enforcing the

ignorability criterion within baseline covariate-defined subgroups. In short, we must assume

that the complexity of the structural model occurs at a rate slower than the increase in

observed-data constraints. Specifically, the treatment effects implied by interactions in the

structural model must not outnumber the constraints imposed by (1). A set of assumptions

that would allow for nonparametric identification of post-treatment effect modifiers has not

yet been identified.

No-interaction assumptions are often used for identification of causal effects. No-interaction

assumptions have been invoked with instrumental variable analysis (Hernán and Robins

2006), in the estimation of direct and indirect effects (Robins and Greenland 1992; Ten Have

et al. 2007; Vansteelandt 2010), and for other causal analyses (Vansteelandt and Goetghe-

beur 2004). Under some modeling configurations, we can partially relax this no-interaction

assumption as we demonstrate next.

Consider the case where we have two binary covariates X1 and X2, and we want to

estimate ψ0 in the model

logit{E[Y |SA1 , A1, X1, X2, R = 1]} − logit{E[Y0|SA1 , A1, X1, X2, R = 1]} =

ψ01 + ψ02A1X1 + ψ03A1SA1 . (12)

This model is similar to (10) but now includes effect modification by a pretreatment covariate.

We re-write the ignorability assumption as

Ri ⊥ Y0|X1, X2.

In this model, nonparametric identification still does not hold for ψ0 = (ψ01, ψ02, ψ03) since

there are more nonzero effects in subgroups defined by joint levels of of SA1 , X1, X2 than

identifying restrictions. Under our parametric model, however, the same argument as above

can be applied to establish model-based identifiability. The 3–dimensional parameter ψ0 can
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be identified using the additional information provided by adding X2 and its ignorability

assumption. That is, the parameters in model (12) may be identified potentially assuming

no interactions involving X2, but not X1. However, the parameters in the following model

logit{E[Y |SA1 , A1, R = 1, X1, X2]} − logit{E[Y0|SA1 , A1, R = 1, X1, X2]} =

ψ01A1 + ψ02A1X1 + ψ03A1SA1 + ψ04A1X2 + ψ05A1X1X2

+ ψ06ASA1X1X2 + ψ07A1SA1X1 + ψ08A1SA1X2 (13)

cannot not be identified, nor can any other model with parameter dim(ψ0) ≥ 4. As in the

case of the bivariate parameter above, multiple models with ψ0 of the same dimension may

fit the data equally well. Therefore, the no-interaction assumption is required for some, but

not all of the possible baseline covariate-treatment interactions on outcomes and will depend

on the richness of the available data. This result suggests a focus on a limited number of

pre-treatment effect modifiers that are considered to be the most relevant. In the JOBS II

data, for example, we would want to focus on baseline depression as the critical pretreatment

effect modifier given its substantive relevance. However, for pre-treatment covariates such

as age or gender, we would enforce the no-interaction assumption. Finally, measures can

be taken to reduce the likelihood of a violation of the no-interaction assumption by limiting

heterogeneity in selected subjects, as was done in JOBS II. In general, we believe the model

is still useful so long as the estimates are given an exploratory rather than confirmatory

interpretation.

Given the model-based identification for effect modification by SA1 , it remains to be

shown that the RHS of model (4) may be expressed in terms of observed data. Under our

stated assumptions, the following set of equalities hold:

P (YA1 = 1|SA1 , A1,X) = P (YA1 = 1|SA1 , A1, R = 1,X)

= P (Y = 1|S,A,R = 1,X).
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The ignorability assumption justifies the first equality (1), while the second holds due

to consistency. Similarly due to ignorability, we note that P (Y0|SA1 , A1, R = 1,X) =

P (Y0|SA1 , A1,X). Under this equivalence, we would write the causal model in (4) as:

logit{E[Y |S,A,R = 1,X]} − logit{E[Y0|S,A,R = 1,X]} = η′s(A, S)ψ0

= f1(A;ψ01) + f2(A, S;ψ02), (14)

where we condition on the observed values A and S as opposed to conditioning on the

potential outcomes A1 and SA1 .

3.3 Post-treatment Effect Modification within the Principal Strat-

ification Framework

Next, we further examine our structural model for post-treatment effect modification within

the framework of principal stratification (Frangakis and Rubin 2002). Principal stratification

is a popular approach for thinking about certain classes of causal effects, particularly when

analysts condition on post-treatment quantities. A principal stratification with respect to a

post-treatment variable is a partition of units into latent classes defined by the joint potential

values of that post-treatment variable under each of the treatments being compared (Mealli

and Mattei 2012). The PS framework often provides useful insights into causal estimands

based on post-treatment variables, and we use it to clarify the estimands of interest. Both

noncompliance and post-treatment effect modification have been written in the PS framework

as separate concepts. Here, we consider them jointly. We should note in advance that in

our example the estimands are equivalent under the SMM and PS frameworks and the

identification assumptions are identical.

To fully characterize our estimand under the principal stratification approach, we con-

sider the cases of noncompliance and post-treatment effect modification separately. Under

noncompliance, our estimand is identical to the principal stratification estimand in that
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there are four principal strata of always-takers, never-takers, defiers, and compliers (Angrist

et al. 1996; Frangakis and Rubin 2002). In the PS framework, defiers are ruled out via the

monotonicity assumption. Here, the no-contamination restriction that we adopt is a strong

form of the usual monotonicity assumption and thus serves an equivalent role (Clarke and

Windmeijer 2010). That is, the no-contamination restriction rules out the presence of both

defiers and always-takers which allows us to identify the other two strata in the observed

data. Under the PS framework, to identify causal effects, we must also assume the exclusion

restriction holds, but we have already stipulated the exclusion restriction under our stated

assumptions. Under noncompliance, the PS estimand is often referred to as the local average

treatment effect (LATE) or the complier average causal effect (CACE). The SMM estimand

is also a local estimand under the no-contamination restriction (Clarke and Windmeijer

2012).

Next, we characterize post-treatment effect modification using the PS framework. For

the moment, we ignore compliance, and thus we denote potential levels of depression as Sr.

If S is binary, as we have defined it, there are four principal strata defined by the joint levels

of S1 and S0. Following, Hsu and Small (2014) we characterize these four basic strata as:

‘always-high’ (S1 = 1 and S0 = 1), ‘never-high’ (S1 = 0 and S0 = 0), ‘treatment positively

affected’ (S1 = 1 and S0 = 0), and ’treatment negatively affected’ (S1 = 0 and S0 = 1). Our

estimand considers patient classes defined by levels of S1. Thus to compare our estimand

to that under PS, we consider the union principal strata defined by S1 = 1 and S1 = 0,

taking the union of the ’always-high’ and ‘treatment positively affected’ and separately the

’never-high’ and ’treatment negatively affected’ strata. If we have both noncompliance and

post-treatment effect modification as in JOBS II, this implies that there are generally eight

principal strata since within each of the four noncompliance principal strata, we have two

effect modification union principal strata. However, under the no contamination restriction,

we assume that effects are only identifiable for the two effect modification principal strata

within the complier strata.
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4 Estimation

We use the Vansteelandt and Goetghebeur (2003) method for the estimation of causal effects

under generalized structural mean models with binary outcomes using the logit link. This

estimation strategy was developed as a solution to Robins (1999), which showed that the

causal odds ratio could not be estimated using the same G-estimation procedure as used

for identity and log links in the presence of high dimensional covariates. To facilitate the

definition of mean treatment-free outcomes used in this modified version of G-estimation, the

first stage of a two stage model is an association model among subjects randomized to the

job search seminar treatment. A detailed argument motivating the need for the association

model is described in Vansteelandt and Goetghebeur (2003) and largely stems from the

noncollapsibility of the logit link.

The first stage model is defined as

logit(E(Y |S,A,R = 1,X; β)) = ηa(S,A,X; β), (15)

for a known function ηa and unknown finite-dimensional parameter vector β, and predicted

mean treatment-free outcomes are constructed as

H(ψ) = expit[ηa(S,A,X; β)]− [f1(A;ψ1) + f2(A, S;ψ2)] (16)

for subjects randomized to treatment, where f1(A;ψ1) and f2(A, S;ψ2) are defined as in

model (10) and S represents intermediate depression at either 6 weeks or 6 months. The

subscript a distinguishes the association model from the structural, causal model. The

functional form for ηa(S,A,X; β) is generally linear in the parameters but may include main

effects, interactions, and higher order terms for the variables. For subjects randomized to

control and hence unable to access treatment, the observed outcome Y equals the treatment

free outcome Y0 following the consistency assumption. In the control arm, it is therefore
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unnecessary to estimate H(ψ) by removing the treatment effect from a model-predicted

mean outcome; H(ψ) is simply set to H(ψ) = Y .

The second stage of estimation then defines the estimating function

U(S,A,R,X, H(ψ)) = d(X, R) [H(ψ)− q(X)] , (17)

for d(X, R), a p−dimensional weight function defined such that its elements d1(X, R), ... dp(X, R)

are non-collinear, and q(X), a function of baseline covariates. The causal parameter ψ is

estimated as the solution to
n∑
i=1

U(S,A,R,X, H(ψ)) = 0. By the randomization assump-

tion, under the true ψ and β, E

[
n∑
i=1

U{S,A,R,X, H(ψ)}

]
= 0 for U(S,A,R,X, H(ψ))

as defined in (17). The chosen d(X, R) and q(X) affect efficiency but not bias in the re-

sulting estimate ψ̂ when the association model is correctly specified. Under a misspecified

association model, the robust estimating equations referenced above are constructed through

strategic selection of d(X, R) and guarantee that type I error is preserved. Term q(X) does

not affect bias under correct or incorrect specification of the association model. Vansteelandt

and Goetghebeur (2003) recommend the choice d(X, R) = d∗(X)(−1)R
R∗P (R=1|X)+(1−R)(1−P (R=1|X))

, with

d∗(X) = E
[
∂H(ψ)
∂ψ
|X
]
, following semiparametric optimality arguments for their GSMM un-

der known β. Under the logit model ∂H(ψ)
∂ψ

= H(ψ)(1 − H(ψ))[R/RS] where H(ψ) is

evaluated at an initial estimate of ψ, ψ̂b.

Under the null hypothesis ψ0 = 0, one may construct locally robust estimating equations

that yield consistent inference under misspecified association models. For variance estima-

tion the sandwich variance estimator that jointly considers estimation of components of the

structural and association models is used, thus taking into account the estimation of the

association model parameters (Vansteelandt and Goetghebeur 2003).
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5 Simulation Study

A simulation study was conducted to evaluate the proposed estimator for assessing effect

modification by post-treatment variables while also accounting for noncompliance. A second

set of simulations which we show in the Appendix displays the results of a simulation study

for using this approach to evaluate post-treatment effect modification under full compliance.

These additional simulations also explore the impact of misspecification of the association

model.

For each subject, independent baseline covariates X1 ∼ Bernoulli(p = 0.4) and X2 ∼

Bernoulli(p = 0.7) were generated. Binary treatment R was simulated following an un-

stratified randomization design, with R ∼ Bernoulli(p = 0.5). A compliance variable A was

generated following the model logit(P (A = 1|X1)) = logit(0.9) − 3X1. For subjects with

R = 0, we set A=0 following the setting where subjects randomized to control are unable to

access active treatment. Under this design, compliance was approximately 66% among those

randomized to treatment. The post-treatment variable S was simulated from the model

logit(P (S = 1|A,R,X)) = γ0 + γ1X1 + γ2X2 + γ3A, with γ = (logit(0.2), 1.0, 1.0, γ3), with

γ3 =0, 0.3, or 1.2 for Si not associated, weakly associated, or strongly associated with A. The

data design contained binary covariates to ensure compatibility among various stages of con-

ditional mean treatment-free potential outcome models. Each simulated dataset consisted

of n=5,000 subjects.

Outcomes were generated under a likelihood consistent with the Retrospective Structural

Mean Model (14), which conditions on observed posttreament data and was shown to be

equivalent to model (4) that conditions on the potential intermediates using a modification

of the strategy described in Robins and Scharfstein (1999). The conditional mean of Y0 given

baseline covariates was defined as logit(E[Y0|X1, X2]) = ρX0 + ρX1 X1 + ρX2 X2 + ρX3 X1X2, with

ρX = (logit(0.35), 0.8,−0.8, 1.5). Conditional mean treatment-free potential outcomes were

then adjusted for S, by setting E[Y0|S,R,X] = expit[logit(E[Y0|X1, X2])+ρS1S+ρS0j(1−S)],
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where ρS1 = 0.4, and for given ρX , γ and values of covariates R,X1, X2, ρ
S
0j

was the solution

to ES[E[Y0|S,R,Xi]] = E[Y0|Xi] for j = 1, ..., 8, indexing unique profiles of R,X1, X2.

Under ignorable noncompliance we set E[Y0|Si, Ai, Ri,Xi] = E[Yi,0|Si, Ri,Xi] and simulated

observed outcomes as Bernoulli(pY ), where logit(py) = logit(E[Y0|S,A,R,X])+ψ1A+ψ2AS

for ψ0=(0.5,-0.5). Under non-ignorable non-compliance E[Y0|S,A,R,X] was generated by

adjusting the conditional treatment-free mean E[Y0|R,X] for compliance A and then S while

maintaining compatibility across conditional means. Observed outcomes were then generated

after incrementing mean treatment-free outcomes for the effect of observed compliance to

treatment, also with ψ = (0.5,−0.5).

The application of the two-stage GSMM considered the association model fully satu-

rated for S,A,X1, X2. The GSMM estimates were compared to estimates from two logistic

regression models: model 1 was similar to an intent-to-treat analysis with the addition of

post-intervention covariates and contained terms R and RS with full saturation for S,X1, X2;

and model 2 was an as-treated approach, including A and AS, also with full saturation for

S,X1, X2. All results were based on 1,000 replicated datasets.

Tables 1 and 2 contain detailed results from simulations across the several described

scenarios with Table 1 featuring ignorable noncompliance and Table 2 demonstrating nonig-

norable non-compliance. Table 3 also features nonignorable noncompliance but differs from

2 in the weak relationship between baseline covariates X1,X2, and Si. The intent-to-treat

style analysis using logistic regression demonstrated substantial bias of at least 28% in all

settings, and up to nearly 200% bias when treatment strongly predicted the intermediate

variable. When the intermediate was not affected by treatment or associated with the out-

come, estimates were generally attenuated compared to the true value for both ignorable

and non-ignorable noncompliance. Moderate bias (9-18%) was observed for the GSMM

when treatment was a weak predictor of the intermediate variable (see Table 2). Additional

simulations showed that this bias is removed by considering larger sample sizes or by in-

creasing the predictiveness of baseline covariates for the intermediate variable. Results of
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Table 1: Simulation Study Results. Mean estimates, percent bias, and Monte Carlo stan-
dard deviations of the modified G-estimation and standard logistic regression when ignorable
noncompliance is present. ρX=(characterizes the association between baseline covariates X,
and (γ1, γ2) characterize the association of X and S. γ3 is the coefficient of A in the data-
generating model for S. ρ = 0 indicates that S does not predict Y0. The first row in each
parameter configuration corresponds to the G-estimation; the second row reports estimates
from the intent-to-treat logistic regression; the third row is the as-treated logistic regression.

ψ0 = (0.5,−0.5), ρX=(logit(0.35),0.8,0.8,1.5), (γ0, γ1, γ2)=(logit(0.2),1,1)

ψ̂1 ψ̂2

Estimate % Bias MCSD Estimate % Bias MCSD

γ3 = 1.2, ρ 6= 0 GSMM 0.53 5.67 0.43 -0.53 5.03 0.55
ITT Log. Reg. -0.48 -195.87 0.11 0.48 -195.63 0.14
AT Log. Reg. -0.20 -140.21 0.12 0.20 -139.97 0.15

γ3 = 0.3, ρ 6= 0 GSMM 0.49 -1.26 0.32 -0.45 -10.10 0.65
ITT Log. Reg. 0.23 -53.53 0.09 -0.24 -52.68 0.14
AT Log. Reg. 0.42 -16.36 0.10 -0.42 -15.04 0.15

γ3 = 0, ρ 6= 0 GSMM 0.49 -1.46 0.29 -0.43 -13.86 0.71
ITT Log. Reg. 0.34 -31.49 0.09 -0.35 -30.75 0.14
AT Log. Reg. 0.50 0.65 0.10 -0.51 1.89 0.15

γ3 = 1.2, ρ = 0 GSMM 0.52 4.82 0.50 -0.49 -1.22 0.79
ITT Log. Reg. 0.37 -26.51 0.10 -0.37 -26.68 0.14
AT Log. Reg. 0.50 -0.62 0.11 -0.49 -1.06 0.15

γ3 = 0.3, ρ = 0 GSMM 0.52 3.04 0.30 -0.48 -4.24 0.71
ITT Log. Reg. 0.36 -28.22 0.09 -0.36 -28.09 0.13
AT Log. Reg. 0.50 0.39 0.10 -0.50 0.80 0.15

γ3 = 0, ρ = 0 GSMM 0.52 3.52 0.27 -0.48 -3.49 0.74
ITT Log. Reg. 0.36 -28.93 0.09 -0.36 -28.72 0.13
AT Log. Reg. 0.50 0.18 0.09 -0.50 0.58 0.15
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Table 2: Simulation Study Results. Mean estimates, percent bias, and Monte Carlo
standard deviations of the modified G-estimation and standard logistic regression when non-
ignorable noncompliance is present. ρX characterizes the association between baseline co-
variates X, and (γ1, γ2) characterize the association of X and S. γ3 is the coefficient of A in
the data-generating model for S. ρ = 0 indicates that S does not predict Y0. The first row
in each parameter configuration corresponds to the G-estimation; the second row reports
estimates from the intent-to-treat logistic regression; the third row is the as-treated logistic
regression.

ψ0 = (0.5,−0.5), ρX=(logit(0.35),0.8,0.8,1.5), (γ0, γ1, γ2)=(logit(0.2),1,1)

ψ̂1 ψ̂2

Estimate % Bias MCSD Estimate % Bias MCSD

γ3 = 1.2, ρ 6= 0 GSMM 0.52 3.61 0.40 -0.51 2.87 0.52
ITT Log. Reg. -0.19 -137.65 0.09 0.23 -145.79 0.13
AT Log. Reg. 0.07 -86.34 0.12 0.25 -149.03 0.15

γ3 = 0.3, ρ 6= 0 GSMM 0.49 -2.68 0.31 -0.43 -13.53 0.66
ITT Log. Reg. 0.26 -47.24 0.09 -0.26 -48.42 0.13
AT Log. Reg. 0.68 36.30 0.10 -0.37 -25.40 0.15

γ3 = 0, ρ 6= 0 GSMM 0.49 -2.98 0.29 -0.41 -18.57 0.73
ITT Log. Reg. 0.35 -29.69 0.08 -0.36 -27.70 0.13
AT Log. Reg. 0.78 55.88 0.10 -0.47 -5.83 0.15

γ3 = 1.2, ρ = 0 GSMM 0.52 3.18 0.51 -0.48 -3.62 0.80
ITT Log. Reg. 0.23 -53.11 0.09 -0.19 -62.66 0.13
AT Log. Reg. 0.73 45.76 0.11 -0.38 -23.26 0.15

γ3 = 0.3, ρ = 0 GSMM 0.50 0.97 0.30 -0.45 -9.44 0.73
ITT Log. Reg. 0.33 -33.46 0.09 -0.32 -36.15 0.13
AT Log. Reg. 0.75 49.14 0.10 -0.41 -18.87 0.15

γ3 = 0, ρ = 0 GSMM 0.51 1.46 0.27 -0.45 -9.83 0.77
ITT Log. Reg. 0.35 -29.04 0.08 -0.36 -28.60 0.13
AT Log. Reg. 0.75 49.89 0.09 -0.41 -18.05 0.15

24



Table 3: Simulation Study Results. Mean estimates, percent bias, and Monte Carlo stan-
dard deviations of the modified G-estimation and standard logistic regression when nonignor-
able noncompliance is present and baseline covariates are weakly predictive of post-baseline
effect modifier. ρX characterizes the association between baseline covariates X, and (γ1, γ2)
characterize the association of Xi and S. γ3 is the coefficient of A in the data-generating
model for S. ρ = 0 indicates that S does not predict Y0. The first row in each parameter
configuration corresponds to the G-estimation; the second row reports estimates from the
intent-to-treat logistic regression; the third row is the as-treated logistic regression.

ψ0 = (0.5,−0.5), ρX=(logit(0.35),0.8,0.8,1.5), (γ0, γ1, γ2)=(logit(0.2),0.2,0.4)

ψ̂1 ψ̂2

Estimate % Bias MCSD Estimate % Bias MCSD

γ3 = 1.2, ρ 6= 0 GSMM 0.44 -12.84% 0.67 -0.27 -46.53% 1.25
ITT Log. Reg. 0.11 -78.58% 0.08 -0.05 -90.08% 0.14
AT Log. Reg. 0.48 -4.01% 0.10 -0.24 -52.72% 0.16

γ3 = 0.3, ρ 6= 0 GSMM 0.45 -9.74% 0.40 -0.18 -64.84% 1.30
ITT Log. Reg. 0.26 -47.10% 0.07 -0.26 -48.97% 0.14
AT Log. Reg. 0.66 31.49% 0.09 -0.45 -10.78% 0.16

γ3 = 0, ρ 6= 0 GSMM 0.46 -8.25% 0.34 -0.10 -80.45% 1.44
ITT Log. Reg. 0.31 -37.11% 0.07 -0.32 -35.35% 0.15
AT Log. Reg. 0.71 41.40% 0.08 -0.49 -1.24% 0.17

γ3 = 1.2, ρ = 0 GSMM 0.41 -18.78% 0.60 -0.20 -59.99% 1.21
ITT Log. Reg. 0.23 -53.79% 0.07 -0.16 -67.59% 0.14
AT Log. Reg. 0.68 35.20% 0.10 -0.41 -18.36% 0.16

γ3 = 0.3, ρ = 0 GSMM 0.45 -9.90% 0.36 -0.13 -74.58% 1.28
ITT Log. Reg. 0.30 -39.35% 0.07 -0.29 -42.56% 0.15
AT Log. Reg. 0.69 38.61% 0.08 -0.45 -10.57% 0.17

γ3 = 0, ρ = 0 GSMM 0.46 -7.96% 0.32 -0.07 -86.15% 1.42
ITT Log. Reg. 0.32 -36.41% 0.07 -0.32 -35.86% 0.15
AT Log. Reg. 0.70 39.29% 0.08 -0.46 -8.55% 0.17
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these additional simulations are shown in the appendix. The as-treated analytic approach

was consistent and more efficient than the GSMM under ignorable non-compliance when the

intermediate was not affected by treatment or not associated with the outcome but exhibited

substantial bias under all scenarios considering non-ignorable non-compliance. The final set

of simulation results shown in Table 3 shows that the modified G-estimation can behave

poorly when there are no strong predictors of the intermediate covariate among baseline

covariates. In this scenario the main effect estimate ψ̂1 was biased by 8%− 19%, and ψ̂2 was

even more biased at 46%− 86%.

6 Post-treatment Effect Modification in JOBS II

In this section, we analyze the data from JOBS II. We first present the results based on the

double logistic GSMM, which allows the treatment effect estimates to vary as a function of

intermediate depression levels under treatment. We restrict the analysis to the subset of

the subjects for which depression levels and the re-employment outcome are fully observed

at all follow up periods. We condition on a large set of pretreatment covariates that were

measured in the JOBS II study. We use pretreatment covariates to specify the association

model, which models the observed outcomes. The pretreatment covariates include binary

indicators for seven categories of occupation type, sex, marital status, whether the subject

was nonwhite, years of education, income, age, a measure of financial strain, and depression

at baseline.

We begin with an analysis that accounts for noncompliance, but does not adjust for post-

treatment effect modification. An analysis based on the double-logistic GSMM shows that

the odds ratio of success for participating in the job training seminars versus not participating

is 1.83 with a corresponding 95% confidence interval (1.17, 2.87). This estimate implies that

the odds of being employed are 83% higher among those who attend the JOBS II training

seminars.

In the JOBS II study, depression levels were measured six weeks and six months after

26



subjects completed the training sessions which comprised the intervention. We conduct sep-

arate analyses for the two intermediate follow-up periods. In the first analysis, the causal

effect of being exposed to the treatment is potentially modified by depression levels at six

weeks, and in the second analysis the effect of the intervention is potentially modified by

depression levels at six months. The two separate analyses allow us to understand whether

the magnitude of effect modification varies over time. We found that model convergence was

somewhat sensitive to specification of the association model. In particular, we found that

when we failed to condition on depressive symptoms at baseline estimates either became

so large as to signal a lack of convergence or convergence failed outright. This was consis-

tent with our simulation study that showed poor behavior with weak baseline correlates of

potential post-treatment modifiers. Specifications that condition on a larger set of baseline

covariates also did little to aid precision of the model estimates. We compare the GSMM es-

timates to estimates from logistic regression. We use the same covariates in the specification

of the logistic regression model.

Table 4 contains estimates for the two causal parameters, ψ01 and ψ02, under two-stage

G-estimation and logistic regression. The GSMM causal estimates (robust standard errors

are in parenthesis) for the ψ02 parameter: -0.05 (0.05) at the six week follow-up and -0.01

(0.04) at the six month follow-up. Estimates of the ψ02 parameter from logistic regression

are much smaller in comparison: 0.004 (0.008) at six weeks and -0.007 (0.007) at six months.

The bias we observe in the simulations when logistic regression is applied appears to be

present in this application as well.

The parameter estimates in Table 4 do not readily convey the dependence of the effect of

job training on the intermediate depression modifier, since the parameter estimates cannot

fully convey how the treatment effect may vary across levels of depression. Specifically,

conditional effects may be bound away from zero for some values of the effect modifier, even

if the interaction effect is itself statistically insignificant (Franzese and Kam 2009). We next

explore in more detail how post-treatment levels of depression modify the effect of the JOBS
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Table 4: Empirical Analysis. Estimates are presented for the log-odds ratio
causal effect parameter ψ1 and post-treatment effect modification ψ2 under 2
different approaches: (i) two-stage G-estimation; and (ii) logistic regression.
All method condition on the same set of pretreatment covariates. Standard
errors are in parentheses.

Depression at Six Weeks Depression at Six Months

ψ̂1 ψ̂2 ψ̂1 ψ̂2

GSMM 1.45 -0.05 0.73 -0.01
(0.73) (0.05) (0.67) (0.04)

Logistic Regression 0.06 0.004 0.26 -0.007
(0.21) (0.008) (0.21) (0.007)

II intervention. Here, we use the measure of depressive symptoms from the six week follow-

up with the parameter estimates from GSMM. We calculate the causal odds ratio and an

associated 95% confidence interval for the intervention conditional on levels of the depression

scale. We plot the pattern of effect modification for quartiles of 6-week depression in Figure

2, which shows that for some values of depression the confidence intervals for the treatment

effect are bound away from zero.

In the plot, as depression scores rise the causal odds ratio decreases. In the sample,

approximately ten percent of subjects recorded no depressive symptoms. The estimated

causal odds ratio for these subjects is 4.29 with an associated 95% confidence interval of

(1.05, 16.77). Next we calculate the causal odds ratio for subjects with a score of seven on

the depression scale, which represents the 25th percentile. The causal odds ratio is 2.97 with

a corresponding 95% confidence interval (1.28, 6.89). When depressive symptoms increase

to a score of 16, the median of the depression scale, the causal odds ratio decreases further

to 1.90 with 95% confidence interval (1.14, 3.18). The magnitude of the treatment effect

is further reduced such that it is not statistically significant for those with higher levels of

depression at six weeks. We next used stratification to partially relax the no-interaction

assumption. That is, we stratified the sample by baseline depression and re-estimated the

model with post-treatment effect modification within the strata. We used the median score
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of pretreatment depression to stratify the sample into high and low depression subsamples.

Within each of these strata, we fit a GSMM with a specification identical to Table 4. We

found that the original pattern of post-treatment effect modification held in the stratified

samples.
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Figure 2: Causal Odds Ratio Effect Modified by Depression Levels at Six Week Follow-Up. The
dotted lines represent 95% confidence intervals. Point estimates calculated at the minimum, 25th
percentile, median, 75th percentile, and 90th percentile on the depression scale distribution.

7 Discussion

We have used GSMMs to estimate causal effects that may be modified by potential inter-

mediates and shown that our models can be equivalently expressed in terms of effect modi-

fication by observed posttreatment variables. Our work complements existing literature on

noncompliance and mediation where conditioning also occurs on post-treatment variables.

One natural comparison is to causal mediation analysis. It would appear that the analysis

we have proposed differs substantially from the purpose of a causal mediation analysis. In

mediation, the goal is to decompose a treatment effect into direct and indirect components
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(Imai et al. 2010b). The indirect treatment effect is an effect mediated by a third variable

which transmits the treatment effect to the outcome. Mediation effects were of key interest

in other analyses (Vinokur and Schul 1997; Imai et al. 2010a). In contrast, we stipulate

only a total effect of the treatment that is conditional on levels of S. More specifically, we

are only interested in how S alters effects, but we do not focus on any effect S has on Y .

However, the identification conditions we invoke can, in another form, be used to identify

mediation effects Small (2011).

Our analysis has focused on a binary treatment. For treatments with more than two

levels, the analysis may be extended by fitting a separate association model for each level of

treatment, and defining H(ψ) for each subject by subtracting off the parametrized effect of

the subjects’ observed treatment according to the proposed structural model. Restrictions

on the effects of various treatment levels may be enforced through the parametrization of ψ

in the blip down function from each treatment arm.

One weakness of this approach is its dependence on the specification of the association

model. When the associated model is nonsaturated, it can be incompatible or uncongenial

to the logistic SMM (Robins and Rotnitzky 2004). Vansteelandt et al. (2011) argue that

the biases from uncongenial estimators are small compared with other assumption failures.

Moreover, alternatives are computationally demanding. Robust weights may be used to

provide valid testing in the absence of treatment effects, but estimation of treatment effects

may be subject to bias under the alternative. Moreover, in data analysis, nonconvergence

was observed when baseline depression, a covariate that was highly predictive of the inter-

mediate variable 6-week or 6-month depression, was omitted from the auxiliary model. The

implication of this for practitioners is that model fitting of the association model should be

completed carefully, with careful attention to functional form and the potential presence of

interaction. Additional methodology to enhance robustness is one potential area for further

research.

Identification of post-treatment effect modification may also be a useful tool in the de-
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velopment of “adaptive treatment strategies.” Under an adaptive treatment strategy, the

treatment level and type are adjusted according to individual level characteristics (Murphy

2005; Lavori and Dawson 2000; Almirall et al. 2012; Robins 2004; Murphy 2003; Collins

et al. 2007). The design of adaptive treatment strategies requires choosing tailoring vari-

ables, variables that are used to decide how to adapt the treatment to specific individuals.

Post-treatment effect modification provides one method for identification of tailoring vari-

ables. If the effect of a treatment varies across levels of a post-randomization variable, this

would suggest that this covariate may be a good tailoring variable. Thus models where post-

treatment covariates are allowed to modify causal effect estimates could be used for further

actions within a study or to tailor clinical decision-making.
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