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Abstract

We consider a regression discontinuity design where the treatment is received if a
score is above a cutoff, but the cutoff may vary for each unit in the sample instead of
being the same for all units. This multi-cutoff regression discontinuity design is very
common in practice, and researchers often normalize the score variable and then use the
zero cutoff on the normalized score for all observations to estimate a pooled regression
discontinuity treatment effect. We formally derive the form that this pooled parameter
takes, and discuss its interpretation under different assumptions. We show that this
normalizing-and-pooling strategy so commonly employed in empirical work may not
fully exploit all the information available in the multi-cutoff regression discontinuity
design. We illustrate our results with two regression discontinuity examples based on
vote shares, using data from Brazilian mayoral elections and U.S. Senate elections.
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1 Introduction

The regression discontinuity (RD) design has become one of the preferred quasi-experimental

research designs in the social sciences, mostly as a result of the relatively weak assumptions

that it requires in order to recover causal effects. In the “sharp” version of the RD design,

every subject is assigned a score and a treatment is given to all units whose score is above

the cutoff and withheld from all units whose score is below it. Under the assumption that

all possible confounders vary smoothly at the cutoff as a function of the score (also known

as “running variable”), a comparison of units barely above and barely below the cutoff can

be used to recover the causal effect of the treatment—see Imbens and Lemieux (2008) and

Lee and Lemieux (2010) for reviews. The RD design is particularly important in political

science, where the discontinuous assignment of victory in close elections often provides a

credible research design to make causal inferences about elite behavior. Although the RD

design has been found to fail in U.S. House elections (Caughey and Sekhon, 2011), Eggers

et al. (2015) show that RD designs based on elections seem to be generally valid as an

identification strategy to recover causal effects in other electoral contexts.

In a standard RD design, the cutoff in the score that determines treatment assignment

is known and the same for all units. For example, in the classic education example where

a scholarship is awarded to students who score above a threshold on a standardized test

(Thistlethwaite and Campbell, 1960), the cutoff for the scholarship is known (at least to the

test administrators), and it is the same for every student. However, in many applications

of the RD design, the value of the cutoff may vary by unit. The most common example of

variable cutoffs occurs in political science applications where the score is a vote share, the

unit is an electoral constituency, and the treatment is winning an election under plurality

rules.

When there are only two options or candidates in an election, the victory cutoff is always

50% of the vote, and it suffices to know the vote share of one candidate to determine the
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winner of the election and the margin by which the election was won. This occurs most

naturally in political systems dominated by exactly two parties, or elections such as ballot

initiatives where the vote is restricted to only two yes/no options (see, e.g., DiNardo and Lee,

2004). However, when there are three or more candidates, two races decided by the same

margin might result in winners with very different vote shares. For example, in one district

a party may barely win an election by 1 percentage point with 34% of the vote against two

rivals that get 33% and 33%, while in another district a party may win by the same margin

with 26% of the vote in a four-way race where the other parties obtain, respectively, 25%,

25% and 24% of the vote.

Standard practice for dealing with this heterogeneity in the value of the cutoff has been

to normalize the score so that the cutoff is zero for all units. For example, researchers

often use as running variable the margin of victory of the party of interest, defined as the

vote share of the party minus the vote share of its strongest opponent. Using margin of

victory as the score allows researchers to pool all observations together, regardless of the

number of candidates in each particular district, and make inferences as in a standard RD

design with a single cutoff. This normalizing-and-pooling approach is ubiquitous in political

science and also in other disciplines. Table 1 lists twenty-three different examples in political

science that use an RD design based on vote shares and adopt this approach. Table ?? in

the Supplemental Appendix shows twenty-three additional examples from other disciplines,

including education, economics and criminology, where this approach has been applied.

Despite the widespread use of the normalizing-and-pooling strategy in applications, the

exact form and interpretation of the treatment effect recovered by this approach has not been

formally explored. This is the motivation for our article. We generalize the conventional

RD setup with a single fixed cutoff to an RD design where the cutoff is a random variable,

and use this generalization to characterize the treatment effect parameter estimated by the

pooling approach. We formally show that the pooled parameter can be interpreted as a

double average: the weighted average across cutoffs of the local average treatment effects
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across all units facing each particular cutoff value. This weighted average gives higher weights

to those values of the cutoff that are most likely to occur and concentrate a high number

of observations. Our derivations thus show that the pooled estimand is not equal to the

overall average of the average treatment effects at every cutoff value, except under particular

assumptions.

We also use our framework to characterize the heterogeneity that is aggregated in the

pooled parameter and the assumptions under which this heterogeneity can be used to learn

about the causal effect of the treatment at different values of the score. As we show, the

probability of facing a particular value of the cutoff may vary with characteristics of the

units. If these characteristics of the units also affect the outcome of interest, then differences

between treatment effects at different values of the cutoff variable may be due to inher-

ent differences in the types of units that happen to concentrate around every cutoff value.

However, if the cutoff value does not directly affect the outcomes and units are placed as-if

randomly at each cutoff value, then a treatment effect curve can be obtained.

We illustrate our results with two RD examples based on vote shares. The first example

analyzes the effect of the Democratic party barely winning a U.S. Senate seat in the 1914-2010

period on the probability of winning the same seat in the following election. The second

example uses mayoral elections in Brazil, and studies the effect of the Party of Brazilian

Social Democracy (PSDB, Partido da Social Democracia Brasileira) winning the election

in the 1996-2012 period on the probability that the party wins the mayor’s office in the

following election.1 Our examples illustrate the different situations that researchers are

likely to encounter in practice: one in which the normalizing-and-pooling approach hides

very little heterogeneity because most races have an effective number of parties close to

two, and one where the normalizing-and-pooling approach hides considerable heterogeneity

because the average number of effective parties is larger.

Before concluding, we discuss recommendations for practice to guide researchers in the

1For details on the data sources for the U.S. and the Brazil examples see, respectively, Cattaneo, Frandsen,
and Titiunik (2015) and Klašnja and Titiunik (2014).
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Table 1: Empirical Examples in Political Science of RD Designs with Normalization and Pooling

Citation Place Running Variable Outcome

Albouy (2013) U.S. Vote Share Federal Spending
Boas and Hidalgo (2011) Brazil Vote Share Incumbency
Boas, Hidalgo, and Richardson (2014) Brazil Vote Share Govt Contracts
Brollo et al. (2013) Brazil Vote Share Federal Transfers
Broockman (2009) U.S. Vote Share Reverse Coattails
Butler (2009) U.S. Vote Share Incumbency
Duraisamy, Lemennicier, and Khouri (2014) India Vote Share Incumbency
Eggers and Hainmueller (2009) UK Vote Share Wealth
Eggers et al. (2015) Several Vote Share Incumbency
Ferreira and Gyourko (2009) U.S. Vote Share Policy Outcomes
Folke and Snyder (2012) U.S. Vote Share Gov. Vote Share
Gagliarducci and Paserman (2012) Italy Vote Share Early Termination
Gerber and Hopkins (2011) U.S. Vote Share Municipal Spending
Hainmueller and Kern (2008) Germany Vote Share Incumbency
Kendall and Rekkas (2012) Canada Vote Share Incumbency
Klašnja (2014) Romania Vote Share Incumbency
Klašnja and Titiunik (2014) Brazil Vote Share Incumbency
Lee, Moretti, and Butler (2004) U.S. Vote Share Incumbency
Lee (2008) U.S. Vote Share Incumbency
Pettersson-Lidbom (2008) Sweden Vote Share Fiscal Policy
Trounstine (2011) U.S. Vote Share Incumbency
Uppal (2009) India Vote Share Incumbency
Uppal (2010) U.S. Vote Share Incumbency

interpretation and analysis of RD designs with multiple cutoffs. We also outline several

directions in which our framework can be extended, including the analysis of fuzzy RD

designs, Regression Kink designs, RD designs with multiple running variables, different pop-

ulation parameters of interest, and endogenous selection of units into cutoffs. Several of

these extensions are fully developed in our Supplemental Appendix, where we also discuss

the connections between our framework and the framework developed by Lee (2008) where

heterogeneity in the RD estimand arises from units having different unobservable types.
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2 Motivating Examples

We now introduce two examples that we will use to motivate and illustrate concepts. Both

examples use an RD design to study whether a party improves its future electoral outcomes

by gaining access to office (i.e., by becoming the incumbent party). The treatment of interest

is whether the party wins the election in year t, and the outcome of interest is the electoral

victory or defeat of the party in the following election (for the same office), which we refer

to as election at t+ 1.

In the first example, we analyze U.S. Senate elections between 1914 and 2010, pooling all

election years and focusing on the effect of the Democratic party winning a Senate seat on

the party’s probability of victory in the following election for that same seat. In the second

example, we analyze Brazilian mayoral elections for the PSDB between 1996 and 2012. As

in the U.S. Senate example, we pool all election years and focus on the effect of the party’s

winning office at t on the party’s probability of victory in the following election at t + 1,

which occurs four years later.

Figure 1 presents RD plots depicting the RD effect of the party barely winning an election

on the probability of victory in the following election for both examples. These plots were

constructed following the method in Calonico, Cattaneo, and Titiunik (2015a). Specifically,

we plot the probability that the party wins election t+ 1 (y-axis) against the party’s margin

of the victory in the previous election (x-axis). The dots are binned means of district-level

binary victory variables, and the solid blue line is a 4th order polynomial fit, estimated

separately to the right and left of the cutoff (which is located at zero). In the plot, all

observations to the right of the cutoff correspond to districts/municipalities where the party

won election t, and all observations to the left correspond to locations where the party lost

election t. Figure 1(a) shows that, in Brazilian mayoral elections, the PSDB’s bare victory

at t does not translate into a higher probability of victory at t+ 1. In contrast, as shown in

Figure 1(b), a Democratic Party’s victory in the Senate election at t considerably increases

6



the party’s probability of winning the following election at the cutoff for the same Senate

seat.
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(a) Brazilian Mayoral Elections, 1996-2012
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(b) U.S. Senate Elections, 1914-2010

Figure 1: RD Effect of Party Winning on Party’s Future Victory: Brazil and the United
States

For the statistical analysis of these two RD designs in Figure 1, we followed standard

practice and used margin of victory as the score, thus normalizing the cutoff to zero for all

elections. This score normalization is a practical strategy that allows researchers to ana-

lyze all elections simultaneously regardless of the number of parties contesting each electoral

district. However, this approach pools together elections that are potentially highly het-

erogeneous. In fact, as we will demonstrate throughout this paper, the two RD designs in

Figure 1 are quite different, with the U.S. Senate example containing much less heterogeneity

than the Brazil example. In the next section, we show that the source of this heterogeneity

is the number of effective parties.

2.1 Effective Number of Parties as RD Design Heterogeneity

In the examples introduced above, if there were exactly two parties contesting the election in

each state or municipality, the running variable or score that determines treatment would be
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the vote share obtained by the party at t, as this vote share alone would determine whether

the party wins or loses election t. However, this is rarely the case in applications. In Table 2,

we display the percentage of elections in our examples that are contested by more than two

parties or candidates: roughly 68% of U.S. Senate elections and 50% of Brazilian mayoral

elections are contested by three or more candidates in the periods for which we have data.2

That this occurs in Brazil, a multi-party system where eight different parties win at least 5%

of municipal races in the 1996-2012 period is not surprising, but it also occurs in the U.S.,

a two-party system where the Democratic and Republican parties dominate elections.3

Table 2: Number of Parties Contesting Elections

U.S. Senate Brazilian Municipalities
Frequency Percent Frequency Percent

One 40 2.88 748 2.72
Two 408 29.35 13,722 49.98
Three or more 942 67.77 12,985 47.30

Total 1,390 100.00 27,455 100.00

Note: U.S. Senate columns include state-level elections between 1914

and 2010, pooling across years, and Brazilian Municipalities columns

include municipality-level mayoral elections between 1996 and 2012.

Based on the information in Table 2, mayoral elections in Brazil and Senate elections in

the U.S. do not seem very different. However, as we show below, while the two examples

differ little in terms of the number of parties, the number of effective parties is quite different.

In a race with three or more parties, in order to know whether a party’s vote share led the

party to win the election, and by how much, we need to know the vote share obtained by

the party’s strongest opponent—the runner-up when the party wins and the winner when

the party loses. Thus, the score or running variable that determines whether a party wins

is the party’s margin of victory—the vote share obtained by the party minus the vote share

obtained by its strongest opponent. When this score is above zero, the party wins, otherwise

2We use the terms “parties” and “candidates” interchangeably throughout, but we note that in U.S.
Senate elections some third candidates are unaffiliated with a political party.

3Combined, the Democratic and Republican parties win 98.6% of all Senate races in our sample.
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it loses; and the closer this score is to zero, the more competitive the election is. In the above

example, if the Democratic candidate obtains 33.4% of the vote against two candidates that

obtain 33.3% and 33.33%, its margin of victory is 33.4− 33.3 = 0.1% and it barely wins the

election. In contrast, when the other two parties obtain 60% and 6.6%, its margin of victory

is 33.4-60=-26.6 and it loses the election by a large margin.

Figure 2 summarizes this information for our two examples. Figure 2(a) shows the

histogram of the vote share obtained by the PSDB’s strongest opponent at election t only

for races where the PSDB won or lost by three percentage points—that is, for races where

the absolute value of the PSDB’s margin of victory at t is three percentage points or less.

Figure 2(b) shows the analogous figure for the Democratic party in the Senate elections

example.
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(a) Brazilian Mayoral Elections, 1996-2012
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(b) U.S. Senate Elections, 1914-2010

Figure 2: Histogram of Vote Share of Strongest Opponent in Elections Where the PSDB
and the Democratic Party Won or Lost by Less than 3 Percentage Points

Figure 2 reveals that the degree of heterogeneity differs greatly between the two examples.

In a perfect two-party system, the vote share of the party’s strongest opponent in races

decided by 3 percentage points or less would range from 51.5% to 48.5%. That is, 48.5%

is the minimum vote percentage that a party could get in a two-party race if it lost to the
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Democratic Party by a margin no larger than 3 percentage points—and, similarly, 51.5% is

the maximum possible value. As illustrated in Figure 2(b), in Senate elections where the

Democratic party wins or loses by less than 3 percentage points, only 26% of the observations

are below 48.5%, the minimum value that would occur in a perfect two-party system with a

50% cutoff for victory. Moreover, in 93% of the elections in the figure the Democratic party’s

strongest opponent gets 46% or more of the vote. In other words, despite most Senate

elections having a third candidate (as shown in Table 2), in the overwhelming majority

of these races the vote share obtained by such candidates is negligible, and there is little

heterogeneity in the location of close races along the values of the strongest opponent’s vote

share.

In contrast, Figure 2(a) shows that the PSDB exhibits much higher heterogeneity, with

strongest opponent vote shares that fall below the two-party system minimum of 48.5% for

44% of the observations. Moreover, more than a third of the elections (35%) have strongest

opponent vote shares below 46%. In other words, a non-negligible proportion of the elections

where the PSDB wins or loses by 3 points are elections in which third parties obtain a

significant proportion of the vote. The histogram shows that, below 46%, the density peaks

at around 35%, showing that in the roughly third of races below 46% the third party obtains

a minimum of about 20% of the vote.

The differences illustrated in Figure 2 suggest that we ought to interpret the RD results

in Figure 1 differently. In the case of U.S. Senate elections, the average effect in Figure 1(b)

can be interpreted as roughly the average effect of the Democratic barely reaching the 50%

cutoff and thus winning a two-way race. Although the existence of third parties means that

the real cutoff is not exactly 50%, in practice most close races are decided very close to this

cutoff, so that the average RD effect can be roughly interpreted as the effect of winning at

50%. However, the average effect in Brazil includes a significant proportion of elections where

the cutoff is very far from 50%. As a consequence, this overall effect cannot be interpreted

simply as the effect of barely winning at the 50% cutoff. Rather, it is the average effect of
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barely winning at different cutoffs that range roughly from 20% to 50% of the vote.

For example, consider two mayoral elections in Brazil where the PSDB wins with a 1-

percentage-point margin of victory. This could be an election in a municipality where the

PSDB obtains 51% of the vote against a single challenger that obtains 49%, or an election

in a municipality where the PSDB obtains 36% of the vote against two challengers that

obtain 35% and 29% of the vote. The former type of municipality is one where two parties

dominate the election and the PSDB’s victory translates into the support of the majority

of the electorate, while the latter type of municipality is one in which despite the PSDB’s

victory, 64% of the electorate does not support the party. Governing may be different in these

two political environments, and thus we might expect the effect of gaining access to office

on the party’s future electoral success to differ between the two. This is the heterogeneity

that gets “hidden” or averaged in the normalizing-and-pooling strategy.

Importantly, the heterogeneity in the Brazil example is not unique or unusual. Many

political systems around the world have third candidates that obtain a sizable proportion

of the vote. Figure 3 shows the distribution of the vote share obtained by a reference

party’s strongest opponent in six different countries across different time periods and types

of elections, using the data compiled by Eggers et al. (2015). These histograms show only the

subset of races decided by less than 3 percentage points for legislative elections in Canada,

the United Kingdom, Germany, India, New Zealand and mayoral elections in Mexico—the

reference party is indicated in each case.4 In all the elections illustrated in Figure 3, there is

a non-negligible proportion of cases where the vote share of the party’s strongest opponent

falls below the range that would be observed in a perfect two-party system with 50% cutoff.

This means that, in all these cases, a pooled RD design that normalizes all cutoffs to zero

would potentially contain substantial heterogeneity. For example, Figure 3(a) shows that in

the elections for the Canadian House of Commons where the Liberal Party of Canada won or

lost by less than three percentage points, the party’s strongest opponent obtained less than

4See the supplemental information to Eggers et al. (2015) for details about the data sources.
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46% of the vote in almost half of the cases, with most of these observations concentrated

between 30% and 46%.

In the sections below, we formally describe the heterogeneity within the RD treatment

effect parameter that arises from normalizing and pooling election vote shares. We also

discuss the interpretation of this parameter, and explore how to recover different quantities

of interest. Later we introduce some additional assumptions that researchers may wish to

invoke in order to use this heterogeneity to learn about treatment effects of a more global

nature, and also discuss recommendations for practice and possible extensions.

3 Identification for an RD Design with Multiple Cut-

offs

We now present formal results for the sharp RD design, assuming that the cutoff has finite

support–i.e., that the cutoff can only take a finite number of different values. We adopt these

simplifications to ease the exposition, but our results extend to fuzzy RD designs, Regression

Kink (RK) designs and cutoffs with continuous support among other possibilities—see Sec-

tion 7 below and the Supplemental Appendix. Our assumptions and identification results

reduce to those in Hahn, Todd, and van der Klaauw (2001), Lee (2008) and Card et al.

(2014) for the special case of single-cutoff RD designs.

We begin by defining the pooled estimand in a multi-cutoff RD design. We adopt the

standard RD framework with one additional modification to account for multiple cutoffs.

We let Xi denote the running variable or score for unit i, which we assume continuous with

a continuous density fX(x). We introduce the random variable Ci to denote the cutoff that

unit i faces, which we assume has support C = {c1, c2, ..., cJ} with P[Ci = c] = pc ∈ [0, 1]

for c ∈ C. We let fX|C(x|c) denote a conditional density of Xi|Ci = c 5. Note that in a

standard RD, Ci would be a fixed value, but in our framework it is a random variable. As

5Throughout the paper, we assume that all densities and conditional densities are positive and that all
(conditional) expectations exist.
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Figure 3: Strongest Opponent’s Vote Share In Elections Decided by Less than 3 Percentage
Points

13



a result, it is possible for different units to face different cutoff values. In the examples, Xi

is the vote share obtained by the party of interest (PSDB or Democratic Party), Ci is the

vote share of the party’s strongest opponent, and the units of analysis indexed by i are U.S.

states or Brazilian municipalities. We let Di ∈ {0, 1} be the treatment indicator. In our

examples, Di = 1 when the party wins the t election in state/municipality i, and Di = 0

if it loses. Like in the usual sharp RD design, assignment to treatment depends on both

the running variable Xi and the cutoff Ci. The unit receives treatment if the value of Xi

exceeds the value of the cutoff Ci and receives the control condition otherwise, leading to

Di = Di(Xi, Ci) = 1(Xi ≥ Ci), where 1(·) is the indicator function.

As discussed above, a common practice in the context of multiple cutoffs is to define a

normalized score X̃i := Xi − Ci, pool all the observations as if there was only one cutoff

at X̃i = 0, and use standard RD techniques. In our examples, X̃i is the party’s margin of

victory at election t—i.e., the party’s vote share (Xi) minus the vote share of its strongest

opponent (Ci)—and the party wins the election when this margin is above zero. That is, we

can write Di = 1(X̃i ≥ 0). It follows that the limit of Di as Xi approaches Ci = c from the

left (i.e., from the region where Xi ≤ Ci) is equal to zero, and it is equal to one when Xi

approaches Ci = c from the right. We formalize this in the assumption below.

Assumption 1 (Sharp RD)

lim
ε→0+

E[Di | Xi = c+ ε, Ci = c] = 1 and lim
ε→0+

E[Di | Xi = c− ε, Ci = c] = 0, for all c ∈ C.

To complete the RD model, we assume the observed outcome is Yi = Y1i(Ci)Di +

Y0i(Ci)(1 − Di), where Y1i(c) and Y0i(c) are, respectively, the potential outcomes under

treatment and control at each level c ∈ C.6 Finally, as it is common in the literature, we

also assume that we observe a random sample (across i) from a well-defined population. In

our examples, Y1i(c) is the party’s victory or defeat that would be observed at election t+ 1

if the party won the previous election at t, and Y0i(c) is the party’s victory or defeat that

would be observed at election t+1 if the party lost the previous election. Note that, for each

6We employ the usual notation Ydi(Ci) =
∑

c∈C 1(Ci = c)Ydi(c) for d = 0, 1.
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state or municipality, we only get to observe Y0i(c) or Y1i(c), but not both, since the party

cannot simultaneously lose and win election t. Instead, we observe Yi a (binary) variable

equal to one if the party wins election t+ 1.

Our notation allows the cutoff for winning an election to affect the potential outcomes

directly. More generally, the potential outcomes may be related to several variables: the

running variable Xi, the cutoff Ci, and other unit-specific (unobserved) characteristics. The

latter variables are usually referred to as the unit’s “type”—see Lee (2008) and Section ??

in the Supplemental Appendix for further discussion. Thus, in our examples, we not only

let the party’s potential electoral success in election t + 1 be related to its vote share and

the vote share of its strongest opponent at t, but also to other (potentially unobservable)

characteristics of the state or municipality where the elections occur, such as its geographic

location, the underlying partisan preferences of the electorate and its demographic makeup.

The RD pooled estimand, τp, is defined as follows:

τp = lim
ε→0+

E[Yi | X̃i = ε]− lim
ε→0+

E[Yi | X̃i = −ε] (1)

Equation 1 is the general form of the causal estimand in a multi-cutoff RD where the score has

been normalized and all observations have been pooled. Estimation of this pooled estimand

is straightforward and, as discussed above, is done routinely by applied researchers. After

normalization of the running variable, estimation just proceeds as in a standard RD design

with a single cutoff—for example, using local non-parametric regression methods, as is now

standard practice.7 Although estimation of τp is straightforward, the interpretation of this

estimand differs in a number of important ways from the interpretation of the causal estimand

in a standard single-cutoff RD design. We turn to this issue in the following section.

7See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for reviews on estimation methods, and
Calonico, Cattaneo, and Titiunik (2014b) for recent results on local polynomial regression methods.
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3.1 General case: heterogeneity within and across cutoffs

We start by considering the most general form of treatment effect heterogeneity where the

treatment effect varies both across and within cutoffs. In this general case, individuals may

respond to treatment differently if they face different cutoffs but also if they face the same

one. Formally, this individual-level treatment effect is τi(c) = Y1i(c)−Y0i(c). In our empirical

example, this implies that the incumbency effect may vary in districts with different vote

shares of the party’s strongest opponent, but it may also vary across districts with the same

value of this variable. In order to derive the expression for τp we invoke the following two

assumptions.

Assumption 2 (Continuity of regression functions)

E[Y0i(c) | Xi = x,Ci = c] and E[Y1i(c) | Xi = x,Ci = c] are continuous in x at x = c for all

c ∈ C.

Assumption 3 (Continuity of the density)

fX|C(x|c) is continuous in x at x = c for all c ∈ C.

Assumption 2 says that expected outcome under control is a continuous function of the

running variable for all values of the score, implying that units barely below the cutoff are

valid counterfactuals of units barely above it. This is the fundamental identifying assumption

in all RD designs. Assumption 3 rules out discontinuous changes in the density of the running

variable. Lemma 1 below characterizes the pooled estimand under complete heterogeneity.

Lemma 1 (Heterogenous treatement effects)

If Assumptions 1, 2 and 3 hold, the pooled RD causal estimand is

τp =
∑
c∈C

E[Y1i(c)− Y0i(c) | Xi = c, Ci = c]ω(c), ω(c) =
fX|C(c|c)P[Ci = c]∑

c∈C
fX|C(c|c)P[Ci = c]

.

The proof is in Section ?? of the Supplemental Appendix. Lemma 1 says that whenever

heterogeneity within and across cutoffs is allowed, the pooled RD estimand recovers a double
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average: the weighted average across cutoffs of the average treatment effects E[Y1i(c) −

Y0i(c) | Xi = c, Ci = c] across all units facing each particular cutoff value. Importantly,

this derivation shows that the pooled estimand is not the equal to the overall average of

the (average) treatment effects at every cutoff value. In Section ?? of the Supplemental

Appendix we discuss this point formally and show the differences between the average of the

cutoff-specific effects and τp. In that section, we also discuss how the pooled estimand can

be written as an average across individuals of different types as in Lee (2008).

Two things should be noted in order interpret the estimand in Lemma 1. First, the

weight ω(c) determines the effects that are included in the pooled parameter τp, and how

much each effect contributes to this parameter. The term P[Ci = c] is simply the probability

of observing the particular realization of each cutoff, and implies that ω(c) will be higher for

those values of c that are more likely to occur. The term fX|C(c|c) increases the weight of

effects that occur at values of c where the density of the running variable is high.

Second, each of the conditional effects being averaged, E[Y1i(c)−Y0i(c) | Xi = c, Ci = c],

is the average effect of treatment given that both the running variable X and the cutoff C are

equal to a particular value c. In the standard single-cutoff RD design, the effect recovered is

the average effect of treatment at the point X = c, an effect that is typically characterized as

local because it reflects the average effect of a treatment at a particular value of the running

variable and is not necessarily generalizable to other values of X. Therefore, the conditional

effects in the pooled RD case intensify the local nature of the effect, because they represent

the average effect of treatment when both the running variable and the cutoff take the same

particular value.

For example, in a perfect two-party system, the RD effect of a party winning election t

on the party’s future victory at t+ 1 recovers a single effect—the effect of this party winning

with a vote share just above 50%, not the effect of winning in general. In contrast, in the

pooled RD design, this is just one of the effects that are included in τp. The pooled RD

estimand τp includes other effects such as the average of the party winning with 40% of the
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vote against a strongest opponent that gets just below 40%, the average effect of the party

winning with 30% of the vote against a strongest opponent that gets just below 30%, etc.

This heterogeneity in τp makes it a richer estimand, but it also makes each of its component

effects more local or specific, because each reflects only one of the multiple ways in which

“barely winning” can occur.

Moreover, τp is subtle in other ways. In the pooled multi-cutoff RD design, just like

in the standard single-cutoff RD design, units whose score X is close to a cutoff may be

systematically different from the units whose score is far from it. In the pooled RD design,

however, units can also differ systematically in their probabilities of facing a particular value

of the cutoff. For example, in the Brazilian mayoral context, municipalities where the PSDB

gets 50% of the vote might be different in relevant ways from municipalities where the PSDB

gets 35% of the vote. In addition, even within those municipalities where the PSDB gets

35% of the vote, municipalities where the strongest opponent also gets roughly 35% may be

very different from those where the strongest opponent gets 10% or 15% and the election is

uncompetitive. In terms of our example, this means that, at every value c, the effects that

contribute to τp are the average effect of the party barely defeating an opponent that obtained

a vote share equal to c. While this effect is uninformative about the effects at other values

of c, it does imply that when there are many values of c the pooled RD estimand contains

information about the causal effect of barely winning in a number of different contexts. This

aspect of the pooled RD estimand, by which many different local effects are combined when

many different values of C may occur, shows that multi-cutoff RD designs contain a richer

set of information relative to single-cutoff settings.

This means that the causal estimand in a multi-cutoff RD design is something of a

paradox. On the one hand, τp is a more local parameter in the sense that it is the effect

of the treatment for those units for which Xi barely exceeds Ci in only one of the multiple

ways in which Xi could barely exceed Ci. On the other hand, when Ci takes a wide range of

values, the average effect of treatment is recovered for many different ways in which Xi can
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barely exceed Ci, potentially leading to a more global interpretation of the RD effect. Later,

we use our two empirical examples to illustrate how researchers can explore the richness in

τp.

4 Multi-Cutoff RD Design Under Additional Assump-

tions

A usual concern with single-cutoff RD designs is that they only offer estimates of the treat-

ment effect at the cutoff and are thus uninformative about the magnitude of the treatment

effect at other values of the running variable. In our examples, the multi-cutoff RD gives us

the effect of barely defeating the opponent party with a range of different values—in Brazil

mayoral elections this range is roughly 20% to 50%. Can we use this wider range of values

to learn about a more global effect? We now consider assumptions under which the diverse

information contained in the pooled estimand can be used to disaggregate the information

in τp and learn about treatment effects of a more global nature.

4.1 Constant treatment effects

We first consider a simplification of the general case, where the treatment effect is different

across cutoffs but constant for all individuals who face the same cutoff, i.e. Y1i(c)− Y0i(c) =

τ(c) with τ(c) a fixed constant for all i. Note that τ(c) varies by unit only insofar as c varies

by unit, but there is no i subindex in τ(c), indicating that two units facing the same given

cutoff c will have the same treatment effect τ(c). In terms of our example, this assumption

implies that the effect of the party winning an election on its future electoral success is the

same in all municipalities/districts where its strongest opponent obtains the same proportion

of the vote. This is undoubtedly a very strong assumption. We include it here to illustrate

one possible way in which the treatment effects recovered by the multi-cutoff RD design can

be given a more global interpretation, but we discuss weaker assumptions in the subsequent

sections.
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The proposition below shows that when there is no heterogeneity within cutoffs, the

relationship between the pooled RD estimand and the cutoff-specific effects simplifies con-

siderably.

Proposition 1 (Constant treatment effects)

If Assumptions 1 and 3 hold, and τi(c) = τ(c) for all i and τ(c) fixed for each c, then the

pooled RD estimand is

τp =
∑
c∈C

τ(c)ω(c),

where the weights are the same as in Lemma 1.

Thus, when effects are constant within cutoffs, τ(c) captures the effect of treatment for

all values individuals facing cutoff c. Naturally, Proposition 1 simplifies considerably when

the treatment effect is the same for all individuals at all cutoffs (i.e., Y1i(c) − Y0i(c) = τ

for all i and all c, and thus τ(c) = τ for all c). In this case, the pooled estimand becomes

τp =
∑

c∈C τ(c)ω(c) = τ
∑

c∈C ω(c) = τ, recovering the single (and therefore global) con-

stant treatment effect. This global interpretation of the multi-cutoff RD estimand under

constant treatment effects is analogous to the interpretation in a single-cutoff RD design,

where the assumption of homogeneous treatment effects leads to the identification of the

overall constant effect of treatment.

4.2 Ignorable running variable

The case introduced above is very restrictive, as it is natural to expect some heterogeneity in

treatment affects among units facing the same value of the cutoff. We now consider the less

restrictive case of unit-heterogeneity within cutoffs, but with an average treatment effect at

every value of the cutoff that does not depend on the particular value taken by the score.

We summarize this in the following assumption.

Assumption 4 (Score Ignorability)

E[Y1i(c)− Y0i(c) | Xi, Ci = c] = E[Y1i(c)− Y0i(c) | Ci = c] for all c ∈ C.

20



Under Assumption 4, the running variable is ignorable once we condition on the value of

the cutoff—that is, once the value of the cutoff is fixed, we assume that the average effect

of treatment is the same regardless of the value taken by the score. The proposition below

shows the form of the pooled RD estimand in this case.

Proposition 2 (Score-ignorable treatment effects)

If Assumptions 1, 3 and 4 hold, then the pooled RD estimand is

τp =
∑
c∈C

E[Y1i(c)− Y0i(c) | Ci = c]ω(c),

where the weights are the same as in Lemma 1.

Thus, when the average effect of treatment does not vary with the running variable X,

E[Y1i(c)−Y0i(c) | Ci = c] captures the effect of treatment for all values of X, not necessarily

those that are close to the cutoff c. For example, E[Y1i(c)− Y0i(c) | Ci = c] may reflect the

average effect of the Democratic party winning election t on its future electoral success for a

given value of its strongest opponent’s vote share, regardless of whether the party defeated

its opponent barely or by a large margin.

In this sense, the effects in Proposition 2 are global in nature. Note, however, that the

treatment effects are allowed to vary with the value of C, and therefore the expression for τ p

in Proposition 2, though not necessarily local, is only averaging over the set of values that C

can take, and the values of C that will be given positive weight are only those values where

the density of X given C at X = C = c, fX|C(c|c), is positive. As such, τp still retains a

local aspect.

4.3 Ignorable cutoffs

We now consider the case where the running variable is not ignorable, but where the het-

erogeneity brought about by the multiple cutoffs to can be restricted in ways that allow

extrapolation. It is useful to introduce the analogy between the RD design with multiple
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cutoffs and an experiment that is performed in different sites or locations. In the latter case,

internally valid treatment effect estimates from experiments in multiple sites are not neces-

sarily informative about the effect that the treatment would have in a different site where

the experiment has not been run. This means that the results from multi-site experiments

may not allow researchers to extrapolate to the overall population, a concern that is not

necessarily eliminated if the number of sites is large (Allcott, 2014). The problem arises

because the sites that are selected to run an experimental trial may differ from the overall

population of sites in ways that are correlated with the treatment effect. For example, sites

where the treatment is expected to have large effects may be more likely to run experimental

trials, leading to a positive “site selection bias” that would overestimate the effects that the

treatment would have if it were implemented in the overall population. Alternatively, the

population may differ across sites in a characteristic that is associated with treatment effec-

tiveness (Hotz, Imbens, and Mortimer, 2005). Of course, generalizing the treatment effect

from one particular site to other locations can be done under additional assumptions.

Like in a multi-site experiment, we have a series of internally valid estimates in the multi-

cutoff RD that we might wish to think of as more general. In the multi-site experiments

literature, the strongest and simplest assumption under which the generalization of effects

is possible is independence of locations with respect to potential outcomes. This condition

is guaranteed by design when the units in the population are randomly assigned to different

sites. In our context, we can make the analogous assumption that, conditional on the value

of the running variable, the cutoff faced by a unit is unrelated to the potential outcomes.

Formally, we can write this assumption as follows.

Assumption 5 (Cutoffs Ignorability)

(a) E[Y1i(c) | Xi, Ci = c] = E[Y1i(c) | Xi] and E[Y0i(c) | Xi, Ci = c] = E[Y0i(c) | Xi] for all

c ∈ C.

(b) Y1i(c) = Y1i and Y0i(c) = Y0i.

Assumption 5(a) says that, conditional on the running variable, the potential outcomes
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are mean independent of the cutoff variable C. In addition, we need to ensure that the value

of the cutoff does not affect the potential outcomes.8 Assumption 5(b) above formalizes this

idea as an exclusion restriction, requiring that the cutoff level does not affect the potential

outcomes directly.

Now define a point x0 such that c0 ≤ x0 < c1. Assumption 5 leads to the following result

for observed random variables:

E[Yi | Xi = x0, Ci = c0]−E[Yi | Xi = x0, Ci = c1]

= E[Y1i(c0) | Xi = x0, Ci = c0]−E[Y0i(c1) | Xi = x0, Ci = c1]

= E[Y1i(c1)− Y0i(c0) | Xi = x0] = E[Y1i − Y0i | Xi = x0],

which is the average treatment effect at x0. Since x0 is not a value in the support of the

random cutoff variable, this shows that under these assumptions we can estimate the average

treatment effect away from the cutoff, and thus obtain a more global effect.

However, the following lemma shows that, as before, the ability to recover a global effect

from the pooled multi-cutoff RD design even under Assumption 5 is limited by the fact that

τp weighs these average effects by the probability of observing a realization of the cutoff

variable Ci at the particular value c.

Proposition 3 (Cutoff-ignorable treatment effects) If Assumptions 1, 2, 3 and 5 hold,

the pooled RD estimand becomes

τp =
∑
c∈C

E[Y1i − Yi0 | Xi = c]ω(c),

where the weights are the same as in Lemma 1.

Thus, under these assumptions, τp averages the average treatment effects E[Y1i − Yi0 |

Xi = c], each of which is the average effect of receiving treatment conditional on the running

8Note that this is equivalent to the “no macro-level variables” assumption in Hotz, Imbens, and Mortimer
(2005).
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variable Xi being at the value c, regardless of the value taken by Ci. In our example, this

represents the average effect of a party winning the t election given that the party’s vote

share is c and regardless of the vote share obtained by its strongest opponent, i.e. regardless

of whether it won barely or by a large margin. However, these averages are still evaluated

only at values of c that are in the support of the random cutoff variable Ci. So, although

they are more global effects, they can only be recovered at feasible values of Ci. Moreover,

the weights entering τp still depend on P[Ci = c] through the weights ω(c).

Note that if, in addition to the assumptions imposed in Proposition 3, we imposed the

assumption that the conditional density of the score Xi given Ci is constant in the support

of Ci,
9 the pooled RD parameter τ p simplifies to:

τp =
∑
c∈C

E[Y1i − Y0i | Xi = c]P[Ci = c]

and now, if the support of Ci is equal to the support of Xi (which will only be possible if both

are discrete or both are continuous), we can recover the average of the average treatment

effect at all values of Xi—see Section ?? in the Supplemental Appendix for further discussion.

All these assumptions combined would thus make τp a truly global estimand, without the

assumption of constant effects as we did before.

Assumption 5 also has another application. Under the conditions imposed in that as-

sumption, E[Y1i(c)− Y0i(c) | Xi = c, Ci = c] = E[Y1i − Y0i | Xi = c]. This shows that when

these assumptions hold, estimating the RD effects separately for each value c will provide a

treatment-effect curve that will summarize the effects of the treatment at different values of

the running variable (independently of the value taken by the cutoff). In other words, under

these assumptions, we can estimate multiple RD treatment effects for different values of the

running variable.

Of course, Assumption 5 is generally strong and may be too restrictive in some empirical

applications. In Section 7 below, we discuss how our framework can be used to relax this

9Formally, this assumption can be written as fX|C(c|c) = k for all c ∈ C with k a constant.
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assumption and allow for endogenous sorting of different unit types across different values

of the cutoff.

5 Empirical Examples

We now illustrate how the formal results derived in the paper can have empirical implications

using our two examples. In particular, we show how in the Brazil example we can estimate

different effects for different values of the running variable. First, we use an exploratory

statistical analysis to show that extrapolating the pooled treatment effect based on the

information contained in the multiple cutoffs is possible in the Brazil example but not in the

Senate example, since in the latter there is simply not enough observations for lower values

of the cutoff variable.

As we highlighted earlier, the two examples differ sharply in the density of observations at

different cutoff values. There are very few U.S. Senate elections where a third party obtains

anything more than a very small fraction of the vote. In the Brazilian mayoral elections,

however, about a third of races occurs in municipalities where the two top-getters combined

obtain less than 70% of the vote. Table 3 presents the frequency of races in our sample by

different levels of strongest opponent’s vote shares at t for the Democratic Party and the

PSDB. Since this variable is continuous, we divide its support in four exclusive intervals:

[0, 35), [35, 40), [40, 45), and [45, 50). Within each of these intervals of strongest opponent’s

vote share at t, Table 3 reports the number of elections that each party won and lost at t.

Note that in a perfect two-party system, knowing the value of a party’s strongest opponent’s

vote share is equivalent to knowing whether the party won or lost the election, but this

equivalency is broken in a multi-party RD design.

For example, the columns corresponding to the PSDB show that, of the 1346 races in

our sample where the PSBD’s strongest opponent obtained between 35% and 40% of the t

vote, the PSDB won roughly 85% and lost the rest. The proportion of victories decreases for

higher values of this variable, with the PSDB winning no more than 64% of the races in all
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cells where vote share of its strongest opponent is 35% or higher. A very different situation

occurs in U.S. Senate elections where, for example, the Democratic Party won all 264 races

where the strongest opponent obtained less than 35% of the vote, as would occur in a perfect

two-party system. Similarly, of the 118 races in our sample where the Democratic Party’s

strongest opponent obtained between 35% and 40% of the t vote, the party won 111 and lost

only 7. It is only in the [45, 50) range where the party loses 20% of races—a non-neligible

but still small proportion.

Table 3: Frequency of Observations for Different Levels of Strongest Opponent’s Vote Shares
at t

Democratic Party PSDB
U.S. Senate Elections Brazil Mayoral Elections

Opponent Vote (%) Total Victories (%) Defeats (%) Total Victories (%) Defeats (%)

[0, 35) 264 100.0 0.0 1346 84.9 15.1
[35, 40) 118 94.1 5.9 986 63.9 36.1
[40, 45) 161 96.3 3.7 1251 62.3 37.7
[45, 50) 221 77.8 22.2 1490 61.5 38.5

Note: Columns corresponding to Democratic Party report number of U.S. Senate elections in

1910–2010. Columns corresponding to PSDB report number of mayoral elections in Brazil in

1996-2012.

We explore the heterogeneity in the Brazil example by separately estimating the RD

effects at different levels of strongest opponent’s vote share. We choose a grid of values in

the support of the vote share of the PSDB’s strongest opponent and, for each value in this

grid, we separately estimate the RD effect of the PSDB’s winning at t on the PSDB’s future

success using only the 600 treated observations closest to the grid value and the 600 control

observations closest to the grid value.

Figure 4 summarizes the results, showing the treatment effects at six different, equidistant

values of strongest opponent vote shares between 34% and 50%. The dots are the treatment

effect and bars are the 95% confidence intervals. We estimated these effects using local-linear

regression with a mean-squared-error (MSE) optimal bandwidth and confidence intervals

based on procedures developed by Calonico, Cattaneo, and Titiunik (2014b). Their method
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Figure 4: RD Effects of PSDB’s Victory on Future Vote Share at Different Levels of Strongest
Opponent’s Vote Share

ensures that the distributional approximation used is valid for this bandwidth. Specifically

we used the rdrobust package (Calonico, Cattaneo, and Titiunik, 2014a, 2015b). Note that,

for every value of the PSDB’s strongest opponent vote share that is displayed in the figure,

we are estimating the effect of the PSDB’s barely defeating its strongest opponent, so that

all the effects in this figure are local RD effects.

We begin by estimating τp, which is the pooled RD estimand that uses margin of victory

as the score and normalizes all cutoffs to zero, by local linear regression and MSE-optimal

bandwidth. The pooled RD point estimate is -0.03, an effect that cannot be statistically

distinguished from zero (p-value = 0.44). The robust 95% confidence interval is [−0.11, 0.05].

The blue dotted line indicates this point estimate in Figure 4. As we noted in Section 3, τp

has a different interpretation than the estimand in a standard single-cutoff RD design. Recall

that the interpretation of τp is both more local and more global than would be the case in
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an RD design with a single cutoff, because this estimand is the effect of barely winning in

a prior election averaging across the multiple ways in which the party can barely win the

election.

As a result, the pooled effect may contain or “hide” significant heterogeneity. Figure 4

reveals that this is the case in the Brazilian mayoralty data. For values of strongest opponent

vote shares that fall near 46% or below, the effect of barely winning is relatively small and

cannot be distinguished from zero. This estimate is also consistent with the results from the

pooled analysis. That is, for most of the range of the running variable, the disaggregated

estimates are not statistically distinguishable from the pooled estimate. However, for those

elections where the PSDB’s strongest opponent obtains a vote share near 49%, the effect is

negative, large in absolute value, and significantly different from zero.

The heterogeneity illustrated in Figure 4 must be interpreted with care for two reasons.

The first reason is practical. As shown in Table 3, the number of observations at every level

of strongest opponent’s vote share is moderate, which may lead to noisy estimates of the

conditional expectations. The width of the confidence intervals in Figure 4 vary significantly

across the range of the running variable. Without sufficient data density, it may be difficult

to separate heterogeneity from noise.

Second, following our discussion in Section 4, the interpretation of the treatment-effect

curve in Figure 4 depends crucially on the assumptions surrounding the factors that affect

the strongest opponent’s vote shares. If we were willing to assume that, at every level of vote

share obtained by the PSDB at t, the vote share obtained by its strongest opponent is mean

independent of the PSDB’s potential victory at t + 1 (Assumption 5a) and the strongest

opponent’s vote shares affect the potential future performance of the PSDB only through

the PSDB’s winning or losing the election but not directly (Assumption 5b), then each of

these effects would be the effect of the PSDB winning election t with a vote share in each

interval, regardless of whether it won barely or by a large margin.

If however, we believe that the more plausible scenario is one in which elections that
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differ in the strongest opponent’s vote share also differ systematically in observed and unob-

served factors that affect the PSDB future vote shares (e.g., municipalities with strong third

parties may be systematically different from municipalities where only two parties contest

the election), then the interpretation of Figure 4 changes considerably. Under this scenario,

the potential differences between the effects also reflect the different electoral environments

that occur at different levels of strongest opponent’s vote shares, and cannot be simply in-

terpreted as the effect of treatment at those levels of the PSDB’s t vote share (the running

variable).

6 Recommendations for Practice

We now outline a few basic recommendations for applied researchers. These recommenda-

tions are specifically tailored to multi-cutoff RD designs that arise from multiple candidates

or parties, but the general ideas apply more broadly to other settings in social science in-

volving multi-cutoff RD designs.

As a natural starting point, we suggest some visual diagnostics. When there are more

than 2 parties, the analyst should create a histogram of the strongest opponent’s vote shares,

as we did in Figure 2. If most of the mass in the distribution is near the same cutoff value,

then the analyst can treat the design as equivalent to a single-cutoff RD design, since the

heterogeneity is minimal. If the density of the vote share of the strongest opponent is more

dispersed as in Figure 2(a), then the pooled estimand is potentially heterogeneous. When

heterogeneous effects are present, the analyst has several options.

First, one could simply pool the estimates and ignore (i.e., average) the heterogeneity

or assume constant treatment effects. Second, one could acknowledge the presence of het-

erogeneity, but leave it unexplored claiming that the main object of interest is the pooled

estimand. Third, one could explore whether the pooled estimate is robust to excluding some

of the observations. For example, in a case that looks like our Brazil example, one could

split the sample into two subsets: races where the strongest opponent gets 45% or more of

29



the vote, and the rest. If most of the mass is in the first subset, an interesting question

is whether the pooled estimate is actually close to the estimate that uses only this subset.

Since the pooled estimand is a weighted average, a low mass of observations below the 45%

cut point would receive little weight but an aberrant treatment effect in this range could

lead to an “uninformative” pooled effect.

Finally, one could develop substantive hypotheses about how the heterogeneity is ex-

pected to change from one cutoff to the next, and explore these hypotheses and heterogeneity

fully, estimating several treatment effects along the cutoff variable. For example, one could

formally investigate the presence of monotonic treatment effects along the running variable.

7 Extensions

The results developed above can be extended in many different directions. Some of these

extensions are undertaken in our Supplemental Appendix, while others are suggested as

topics for future research.

1. Fuzzy RD Designs. All the results presented above can be derived for the more

general case of a multi-cutoff fuzzy RD design, where compliance with treatment is

imperfect. In this case, some units below the cutoff may receive the treatment and

some units above it may refuse it, leading to a jump in the probability of receiving

treatment at the cutoff that is less than one. This extension is straightforward and

is given in Section ?? of the Supplemental Appendix. Despite the necessary technical

modifications, all the conceptual issues discussed above apply directly to the fuzzy RD

case.

2. Kink RD Designs. Our results also apply to the quite recent literature on Regression

Kink (RK) designs, in which a treatment or policy is assigned on the basis of a score

via a formula exhibiting “kink” points at which the specific formula that relates the

assignment variable to the treatment changes discontinuously. See Card et al. (2014)

for more details. To our knowledge, this design has not yet been used in Political
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Science. Nonetheless, in Section ?? of the Supplemental Appendix we show how our

main identification results extend to this case, with appropriate modifications.

3. RD Designs with Multiple Scores. There are strong connections between our

multi-cutoff framework and RD designs with multiple scores or running variables, which

have received recent attention (see, e.g., Imbens and Zajonc, 2011; Keele and Titiunik,

2015; Papay, Willett, and Murnane, 2011; Wong, Steiner, and Cook, 2013). In Section

?? of the Supplemental Appendix, we discuss these connections and how our main

results apply, with proper modifications, to this case. In particular, we show how an

RD design with one score and multiple cutoffs can be recast as an RD design with two

running variables.

4. Population Parameters of Interest. The main goal of this paper is to present

a framework to analyze multi-cutoff RD designs, and to clarify the interpretation of

the commonly targeted pooled RD estimand. Our results, nonetheless, also allow to

investigate the construction of many other estimands by altering the weighting scheme

given to the different local RD treatment effects for each value in the support of Ci.

In other words, instead of settling for the weights ω(c) in the lemma and propositions

above, researchers could consider employing appropriate weighting schemes to modify

the final targeted RD estimand. Due to space limitations, we did not pursue this line

of research here but we plan to investigate this issue further in upcoming work.

5. Endogenous Cutoffs. This is perhaps the most important extension of our work.

Some of our results impose simple and easy-to-interpret assumptions, effectively treat-

ing the variable Ci as exogenous. However, as we discussed above, the average treat-

ment effects E[Y1i(c) − Y0i(c) | Xi = c, Ci = c] may differ for different values of c

because the units close to one value of c may be systematically different from the units

who are close to a different value, and this difference may be correlated, for example,

with the effectiveness of the treatment. This implies that differences in the average
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treatment effect at different values of the cutoff may arise due to “selection” of dif-

ferent unit types into cutoffs. Under Assumption 5 above, the potential outcomes are

mean independent of the cutoff variable Ci, and we can rule out the phenomenon of

self-selection. This is undoubtedly a strong assumption. In ongoing research, we are

exploring how to relax this assumption to allow for self-selection into cutoffs based on

observable characteristics, as in the framework of Hotz, Imbens, and Mortimer (2005)

for multi-site experiments.

8 Concluding Remarks

The standard RD design assumes that a treatment is assigned on the basis of whether a score

exceeds a single cutoff. However, in many empirical RD applications the cutoff varies by

units, and researchers normalize the running variable so that all units face the same cutoff

value and a single estimate can be obtained by pooling all observations. This is a useful

approach to summarize the average effect across cutoffs, but in some cases it is possible to

dissagregate the information contained in the pooled effect and provide a richer description

of the underlying heterogeneity in the treatment effects.

As we showed above, when there are multiple cutoffs, the pooled RD estimand is the

weighted average of the average effect of treatment at every cutoff value, with higher weight

given to a particular cutoff value c when there is a high number of units whose scores are

close to c. Our formalization of the pooled estimand as a weighted average thus shows

that the degree of heterogeneity captured by this estimand will vary on a case-by-case basis

depending on the density of the data used in each application.

Our two examples illustrated this issue. In the case of U.S. Senate elections, a pooled

multi-cutoff RD design arises because races with more than two candidates are very common.

However, the pooled estimand that uses margin of victory as the normalized running variable

hides little heterogeneity, because the third candidate typically obtains a very low share of

the vote and as a result the number of elections where the Democratic party wins with a vote

32



percentage that is far from 50% is very low. In contrast, a substantial proportion of Brazil

mayoral elections are decided far from the 50% cutoff because it is common for the two top

parties combined to obtain less than 80% or 70% of the vote. In this type of scenario, the

heterogeneity underlying the pooled estimand can be substantial. As we show in the case of

Brazil for the effect of the PSDB winning on its future electoral victory, the pooled estimate

is statistically indistinguishable from zero but using only observations where the vote share

obtained by the PSDB’s strongest opponent is near 49%, this effect becomes negative, large

and statistically different from zero.

In showing that the weights in the pooled approach combine the effects at different cutoffs

in a particular way, our framework also suggests that researchers may want to choose different

weights relevant to their application. But, as we discussed above, the interpretation of this

heterogeneity depends on whether the probability that a unit faces a particular cutoff is

related to characteristics that correlate with the potential effects of the treatment.
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