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Experiments have become an increasingly common tool for political science researchers over the last decade, particularly
laboratory experiments performed on small convenience samples. We argue that the standard normal theory statistical
paradigm used in political science fails to meet the needs of these experimenters and outline an alternative approach to
statistical inference based on randomization of the treatment. The randomization inference approach not only provides
direct estimation of the experimenter’s quantity of interest—the certainty of the causal inference about the observed units—
but also helps to deal with other challenges of small samples. We offer an introduction to the logic of randomization inference,
a brief overview of its technical details, and guidance for political science experimenters about making analytic choices
within the randomization inference framework. Finally, we reanalyze data from two political science experiments using
randomization tests to illustrate the inferential differences that choosing a randomization inference approach can make.

Experimentation has been a growth industry in
political science over the last decade or so. This
growth reflects an interest in making valid causal

inferences about political phenomena. Randomly assign-
ing subjects either to receive or not to receive a treat-
ment that represents a causal factor of interest enables re-
searchers to employ the assumption that they have equiv-
alent groups, with the exception of the groups’ recep-
tion of the treatment. Thus, the cause of any observed
differences across the groups in the outcome of inter-
est is validly ascribed to the treatment—but not without
some uncertainty. Because random assignment delivers
equivalence in expectation, there remains a chance in any
one experiment that the groups were different on the
outcome of interest before treatment. Thus, the experi-
menter is left with the question of how certain it is that
any observed difference is due to the treatment, and not
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to the chance of random assignment, itself. We engage in
this article the question of how to characterize this un-
certainty through statistical tests and do so while paying
attention to the frequency with which political science ex-
periments rely upon small, nonrandom samples, typically
termed convenience samples. We thus offer an overview
of the logic of randomization inference and its basic im-
plementation, as well as guidance about when particular
statistical tools might be most helpful and appropriate.
Randomization inference uses random assignment as the
statistical basis for inference to offer estimates of un-
certainty about whether observed outcomes under one
random treatment assignment might have been observed
under an alternative random allocation of the treatment.
It is a departure from commonly used classical statis-
tical tests in the frequentist framework, which typically
rely on an assumption of random sampling and involve a
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p-value as an estimate of the uncertainty about whether
a sample is representative of a population. Using classical
inference also relies on the assumption that the test statis-
tic follows some parametric distribution such as the t or
Normal. In political science applications where the cen-
tral inferential task is connecting a sample to a specified
population, the classical approach makes sense. In the ex-
perimental context, it very often does not.1 Classic infer-
ential tools do not provide direct estimates of the experi-
menter’s quantity of interest—uncertainty about internal
validity—and their assumptions of random sampling and
parametric distributions can seem unwarranted or even
troubling given the samples used in some experiments.
The randomization inference approach enables the ex-
perimenter to proceed without such assumptions. It also
offers tests that can address a number of common ana-
lytic challenges faced by political science experimenters.
Yet, invoking the randomization inference framework
does not necessarily entail the use of new statistical tech-
niques. Indeed, a number of randomization tests can be
approximated by standard (normal theory) tests when
sample (cell) sizes are large enough. A firm understand-
ing of the randomization inference approach, however,
clearly delineates which standard tests are appropriate and
when.

Randomization inference is not new. In fact, the con-
cept dates back to the basic theory of randomization for-
mulated by Fisher (1935). These tests have been largely
absent, however, from experimental methodology in po-
litical science. We conducted a JSTOR search for all articles
that contained the word “experiment” published between
1995 and 2007 in the American Political Science Review,
the American Journal of Political Science, and the Journal of
Politics. This search returned 258 articles. We did not find
a single example of randomization inference. We expect,
however, that practitioners offered an informed choice
between standard approaches and the randomization in-
ference approach will find the latter useful.2

1 There are ways to recast experiments and randomization as sam-
pling mechanisms to provide a basis for classical statistical infer-
ence. The most coherent story is to treat the subjects as a population
and assume that random assignment of treatment forms a sampling
mechanism for that population. Another possibility is to assume
that the convenience sample is a random sample from some un-
known or hypothetical population (Lehmann and Romano 2005).

2 This is not to say that randomization tests are totally unknown
to political scientists. Hansen and Bowers (2008) investigate and
advocate the utility of randomization tests using a political science
application. Ho and Imai (2006) provide another example with a
political application. These all appear in statistics journals, which
underscores the rarity of these tests in political science. We know
of one article published in the main disciplinary journals that uses
randomization tests to analyze an experiment: Fowler and Kam

To convey the intuition of the randomization infer-
ence framework, we walk the reader through a simple
example before moving on to the technical details of the
approach. We cover not only the technicalities of simple
hypothesis testing, but also the estimation of treatment
effects and confidence intervals. We then illustrate the
use and implications of randomization inference with
two published experiments highlighting the differences
between the inferences that would be made from these
data using randomization inference rather than standard
tests.

Principles of Randomization
Inference: An Example

Before providing a formal description of randomization
tests, we start with an example to illustrate the logic
and implementation of the randomization inference ap-
proach. We introduce with this example both the gen-
eral intuition of randomization inference and the use of
a rank-based test, which is possible but not necessary
within the randomization framework. Consider an ex-
periment where we select seven students to play a dictator
game with a computer program which asks them to al-
locate 100 dollars between themselves and a charitable
donation.3 Three of the students are randomly chosen
to receive the treatment, a prime expected to make them
more altruistic. If the treatment is effective, we would
expect that the students who receive it would give away
more of their money. If there is no effect of the treatment,
we would expect no such difference across the two sets of
students. In other words, we are interested in testing the
following null hypothesis:

H0: The prime has no effect on amount given,

against our alternative:

Ha: The prime has a positive effect on amount given.

Relying on the standard toolkit of the political scientist,
we might translate these expectations into a t-test com-
paring the observed mean difference in dollars given to
a null of no mean difference. We would then calculate
a p-value using the critical value from a t-distribution.
Note this implies the assumption that the test statistic
follows a t-distribution. As an alternative, we can derive
the statistical test from the randomization of treatment

(2007), an article that fell just outside the time bounds of our
initial JSTOR search.

3 This example is adapted from one in Sprent and Smeeton (2007).
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TABLE 1 Possible Combinations of Ranks in
Treatment Group

1,2,3 1,2,4 1,2,5 1,2,6 1,2,7
1,3,4 1,3,5 1,3,6 1,3,7 1,4,5
1,4,6, 1,4,7 1,5,6 1,5,7 1,6,7
2,3,4 2,3,5 2,3,6 2,3,7 2,4,5
2,4,6 2,4,7 2,5,6 2,5,7 2,6,7
3,4,5 3,4,6 3,4,7 3,5,6 3,5,7
3,6,7 4,5,6 4,5,7 4,6,7 5,6,7

assignment and avoid the parametric assumption entailed
in the use of the t-distribution.

Our expectation in this example, again, is that treated
students should give away more than nontreated students.
The best evidence that the prime increased altruistic be-
havior would be if the three students who received the
treatment rank 1, 2, and 3 in terms of the amount given
away. So we might ask: what is the probability that the
three students in the treatment group would happen to
rank 1, 2, and 3 in terms of the amount given away if
the null hypothesis were true, and, in fact, there was no
effect of the prime? To develop a probability statement
about this hypothesis that hinges on the composition of
the treatment and control groups—the feature that was
assigned by a random process—we turn to basic combi-
natorics. Knowing that the number of ways of selecting r
objects from a set of n is n!/[r !(n − r )!] tells us that there
are 35 ways to select three students from a set of seven.
Table 1 contains all the possible combinations of ranks
that we could observe for our set of treated subjects, and
random allocation of treatment determines the probabil-
ity for each of these cell entries. Seeing in the table that
our best evidence outcome is 1 of 35 possible treatment-
group compositions tells us that there is a 1/35 ≈ 0.0286
chance that we would observe the best evidence case if the
null were true. That is, the chance that random assign-
ment alone will produce this exact outcome is 1/35. This
p-value indicates that the best evidence outcome enables
us to be fairly confident that the prime has an effect on
student behavior in our divide-the-dollar game.4

We can make this approach to hypothesis testing
more general by introducing a summary statistic that
enables us to translate ranks into a single measurement
of the outcome among the treatment subjects. One pos-
sible statistic for this purpose is the sum of the ranks
for the treated subjects. This statistic will be lower if the

4 If we had a two-sided alternative hypothesis, we would double
the resultant p-value. For details on other methods for calculating
two-sided p-values, see Lehmann (1975).

treated subjects are generally higher in their giving than
the control subjects, and higher if they are not.5 Using
this statistic, we can answer the question of what the
chance is of observing an outcome of a specific degree (or
smaller/larger) among the treatment subjects. For exam-
ple, suppose the outcome we observed among the treated
subjects was the ranks 1, 2, and 7. Our summary statistic
would be 10 (1 + 2 + 7 = 10). This seems close to the
“best evidence” outcome we just considered, where the
sum of the ranks would be 1 + 2 + 3 = 6, but is it close
enough to be convincing evidence of a treatment effect?
To answer this question, we work out the probability of
observing a rank sum statistic of the same amount or
less by returning to our enumeration of all 35 possible
combinations of the three ranks and calculating the rank
sum for each combination. Four of the 35 possible rank
combinations produce a sum of 10, three more produce
a sum of 9, two result in a sum of 8, one set sums to 7,
and another to 6. Thus, under random assignment, the
chance of observing an outcome like the one we did or
smaller would be p = 11/35 ≈ 0.314. Put another way,
if the prime has no effect, we could expect to see a value
for the summed ranks as low as or lower than the one we
observed 31 out of every 100 times we randomly assigned
the treatment to these particular subjects. Using the tradi-
tional hypothesis testing threshold of .05, the p-value we
calculated would not allow us to reject the null hypothesis;
the observed outcome did not provide sufficient evidence
that the prime had an effect on our subjects’ behavior.
Thus, the p-value in a randomization test is calculated as
the probability of observing a test statistic as large as or
larger than the observed test statistic.

Note that the interpretation of the p-values in this
example references the information we believe the po-
litical science experimenter is after: the probability that
the result observed among his or her specific set of ex-
perimental subjects can be explained away by the chance
constitution of the treatment groups under one allocation
of treatment. Randomization inference explicitly focuses
on local inference, endeavoring to compare the responses
that the subjects studied exhibited under one random
allocation of treatment to the unobserved responses the
same individuals would have displayed under an alternate
random allocation of treatment. We do not need to assert
these subjects are any sort of sample from any known pop-
ulation. An inference of this type is valid for any type of
sample and may be particularly sensible for convenience
samples. We are able to make statistical inferences because

5 Note the inverse relationship is due to the direction of our
ranking—that those who gave away more were given lower val-
ues for their ranks (highest giver being ranked 1, etc.). Having
directionality—and attending to it—is what is important here.
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we can use the randomization of the treatment to create a
meaningful probability distribution for the null hypoth-
esis and can calculate a p-value for any combination of
values that we might observe in the experiment without
ever using a parametric distribution.

Principles of Randomization
Inference: Formal Matters

In this section, we offer a formal outline of randomization
inference. We begin with the basic mechanics of testing
that the treatment is completely without effect, including
explanations of exact tests and sharp null hypotheses.
We discuss the process of choosing an appropriate test
statistic, including considerations about using rank-based
tests. Of course, calculating the p-value for rejecting the
null of no treatment effect is only one statistical quantity
of interest, so we also discuss methods for generating
confidence intervals and point estimates. And we discuss
the possibility of approximating randomization inference
tests with standard parametric tests, including caveats
about turning to these statistical tools.

The basic mechanics of a statistical test built on the
randomization inference framework include the same el-
ements as any statistical test: data, a null hypothesis, a test
statistic, and a distribution of the test statistic under the
null hypothesis. The derivation of the last element, the
null distribution, however, is unique to randomization
tests. To provide a formal derivation of the null distri-
bution, we first define T as a random vector that assigns
subjects to either the treatment or control group. To illus-
trate, if the first, third, and fourth subjects out of seven
subjects are selected to receive the treatment, T would
have the following form: (1,0,1,1,0,0,0).

Next, we denote the quantity y as a vector of the
outcomes for the subjects, and we define the teststatistic
as

S = f (y, T). (1)

That is, the test statistic, S, is the result of a function,
f , that operates on both the observed outcomes and the
treatment assignment. In the example in the first section,
S took the form of the summed ranks for the treatment
group. The function f and the test statistic S can take sev-
eral possible forms; we discuss some of those possibilities
in greater detail in following sections.

We further denote all possible responses under the
treatment as � with elements si . This � contains all out-
comes under all possible realizations of T. In our earlier
example, summing each of the entries in Table 1 would

form � for the experiment. We use � to calculate the
probability of observing a value of S of a particular size
si or larger (or smaller, depending on the direction of
our expectations) if the null hypothesis were true. This
p-value is the sum of the randomization probabilities that
lead to those referenced values of S, relative to all possible
values of S:

p = P r (S ≥ si |H0) =
∑

I (S ≥ si )

|�| , (2)

where I (·) is an indicator function, and | · | denotes the
cardinality of a set. Generating p-values in this way im-
plies that randomization tests are exact . A statistical test
is exact when the p-value is an always exact calculation of
�, where � is the probability of making a Type I error—
rejecting the null hypothesis when it is true. � is, of course,
an important piece of information in the decisions we
make about statistical evidence. Recall that using the con-
ventional 0.05 significance level for hypothesis testing, for
example, reflects an intention to set � to 0.05. Exactness
is thus an attractive property of randomization tests. In
comparison, the actual probability of a Type I error will
differ from � under a traditional parametric test if the
test statistic fails to meet any of the test assumptions. For
example, if T , the test statistic in the t-test, diverges from
a t-distribution, perhaps due to outliers in the data, the
probability of a Type I error using that test will differ
from �.6

As promising as the randomization inference ap-
proach to hypothesis testing with experimental data
seems, there is one caveat, albeit a practical one. For large
samples, the number of possible outcomes can be quite
large and, even with modern computing, the time re-
quired to compute an exact p-value can be lengthy. For
such situations, we can simulate the distribution of null
outcomes and derive approximate exact p-values. With
large samples, these simulated tests have been shown to
very closely approximate the exact tests. In fact, in exam-
ples where the entire null distribution can be elaborated,
approximate tests based on simulation produce accurate
inferences even when the number of simulations is con-
siderably smaller than the total number of permutations.7

6 The same logic holds for confidence intervals. We specify the
coverage for a confidence interval by selecting 1 − �. In parametric
tests, a failure to meet the distributional assumption can cause this
to be untrue.

7 There are several exceptions. Fisher’s exact test for a binary out-
come and a binary treatment has a closed-form solution, as the
permutation distribution follows a hypergeometric distribution.
Other tests with closed-form solutions are the Mantel and Haen-
szel test and the d statistic of Hansen and Bowers (2009).
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The mechanics of randomization inference mecha-
nism bear repeating. Probability enters our calculations
only through randomization of the treatment and does
not rely on any parametric probability distribution or
sampling mechanism. That is, the inference is entirely
design-based—assuming only random allocation of units
to experimental conditions—and invokes no modeling
assumptions external to the study design. Here, the null
distribution is completely known. Moreover, the p-values
directly translate into the experimenters’ original quan-
tity of interest: the probability that what they observe as
evidence of a treatment effect can be explained away by
the chance process that assigned their observed subjects
into treatment and control groups.

The Sharp Null

The randomization inference paradigm we have outlined
was developed by Fisher (1935), who advocated making
inferences about treatment effects through a test of the
sharp null hypothesis. Under the sharp null hypothesis,
we test whether the treatment effect is zero for all units.
The potential outcomes framework helps clarify the dis-
tinct nature of the sharp null hypothesis. First, we note
that for each unit i observed in the experiment, the in-
dicator Ti = t, t ∈ {0, 1}, records the randomly assigned
treatment status. Each unit then has a potential outcome
for each treatment condition, which we denote as Yi (t).
In potential outcomes notation, if the sharp null hypoth-
esis holds, then Yi (1) = Yi (0). That is, treatment status
is irrelevant to each individual subject’s outcome; each
would exhibit the exact same potential outcome under
the treatment as he or she would when not treated. This
approach is different from the approach developed by
Neyman (1923), which tests hypotheses about the aver-
age treatment effect (ATE). Under Neyman’s formula-
tion, the null hypothesis is that the ATE is zero, which
may occur even if the treatment effect is not zero for all
subjects—some subjects exhibiting a positive effect and
others a negative effect could produce an average of “no
difference” across the treated and control groups. While
the Neyman approach is certainly sensible and widely
embraced, there are compelling reasons to adopt Fisher’s
approach to hypothesis testing. Most notably, the p-value
from a test of the sharp null is accorded special status due
to its assumption-free nature. As Rosenbaum (2002b, 27)
notes:

In the theory of experimental design, a special
place is given to the test of the hypothesis that
the treatment is entirely without effect. The rea-
son is that, in a randomized experiment, this test

may be performed virtually without assumptions
of any kind, that is, relying on the random as-
signment of treatments.

The experimenter need only assert about his or her
data that he or she did, in fact, perform a randomized
experiment. It is unnecessary even to make what Rubin
(1986) called the “stable unit-treatment value assump-
tion” or SUTVA, which is commonly needed to pro-
ceed with other tests. SUTVA asserts that the potential
outcomes under treatment or control for each unit are
fixed and notably do not depend on the treatment status
of other units. The test of the sharp null is valid even
if SUTVA is violated, which can easily occur through
interference—when the outcome for one unit is affected
by the treatment status of other units (Rosenbaum 2007).8

And while Fisher’s approach enables the analyst to pro-
ceed without assumptions, tests of average effects re-
quire additional assumptions even for simple hypothesis
testing.9

This does not mean that tests based on p-values are
of greater practical importance than point estimates and
confidence intervals. Some, particularly Bayesians, have
questioned the value of hypothesis tests, sharp or oth-
erwise, and p-values (Gill 1999) and have argued that
confidence intervals and point estimates along with simu-
lations and assessments of practical significance are more
valuable than a test of the null hypothesis (Gelman and
Hill 2006). Certainly it is true that many researchers will
wish to know more about what their results suggest about
the substantive significance of their treatments. As we
discuss further below, estimates of this sort require addi-
tional assumptions. When the researcher has any doubt
about those assumptions, testing the sharp null seems
all the more important and useful. Recent work does,
however, allow one to retain the randomization infer-
ence framework but relax the assumption that the treat-
ment effect is the same for all units in the experiment
(Rosenbaum 2003, 2007). We give a very brief introduc-
tion to these techniques later. In what follows, then, when
we refer to a hypothesis test, we mean Fisher’s version
of these tests. As we discuss later, in large samples the
distinction between the Fisher and Neyman approaches
vanishes.

8 Note that Rubin (1986) argued that Fisher’s framework automati-
cally implied a special form of SUTVA held, rather than that SUTVA
could be violated.

9 In brief, the Neyman approach involves first using the mean dif-
ference as an unbiased estimator of the causal estimand. The analyst
next finds an unbiased or upwardly biased estimator for the vari-
ance of the average causal effect. An appeal to the central limit
theorem allows the analyst to form a confidence interval for the
average causal effect based on these estimated quantities.
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Test Statistics

A range of valid test statistics is available to the exper-
imenter within the randomization framework. That is,
one has choices about f , the function that operates on
treatment assignment and observed outcomes to produce
S, a test statistic. An ideal choice will produce a test statis-
tic that distinguishes between the null and alternative
hypothesis. In statistical terms, we want a powerful test
statistic, one that will have an extreme value if the null
hypothesis is false. It is difficult to offer a more specific
general recommendation for choosing a test statistic be-
cause there are many alternative hypotheses, and no one
test statistic is powerful in reference to all of them. We thus
review here three test statistics that might be useful—each
of which compares how the distribution of the potential
outcomes under the alternative hypothesis differs from
the distribution under the null—and provide some com-
mentary on why each might be chosen. Importantly, we
discuss the limitation of statistics as the basis for guidance
in choosing a test statistic and the role that theory and
substantive judgment must play.

Tests based on differences in means are a familiar tool
for comparisons across treated and control groups and are
available within the randomization inference framework.
We might choose the average difference across the treat-
ment and control groups:

�A = 1

nT

∑
Yi (1) − 1

nC

∑
Yi (0) = ȳ1 − ȳ0 (3)

where nC is the number of units in the control group and
nT is the number of units in the treatment group.10 While
this statistic is attractive for its ease of interpretation, it
is sensitive to outliers and will have low power if there
are larger differences in the tails of the two distributions.
Other similar test statistics are possible. For example, one
might use the test statistic from the t-test.

A transformation before comparing average levels
across treatment and control can produce other useful
statistics. For example, taking natural logarithms of the
outcomes and estimating as follows,

�M = 1

nT

∑
ln(Yi (1)) − 1

nC

∑
ln(Yi (0)) (4)

produces a statistic that we can interpret as a constant
multiplicative treatment effect (Imbens and Rubin 2008).
Such a transformation might be especially attractive when
a constant additive effect might (incorrectly) suggest po-
tential outcomes for some units that are outside the sub-

10 Note this test statistic does not imply a test of an average treatment
effect. It is still a test of the sharp null hypothesis, where it is assumed
the effect of the treatment is constant. Why this is true will be clear
when we discuss point estimation.

stantively meaningful bounds of the outcome measure,
as in a count of something like income or the number of
votes cast.

Test statistics based on ranks of the outcome data are
also common. As we illustrated with our example in the
first section, the outcomes are transformed to integers
that rank where they fall in the distribution of observed
values, and the test statistic is the sum of these ranks
in the treatment group. Examples of these tests include
the Wilcoxon rank-sum test for comparison of a control
group and a single treated group and the Kruskal-Wallis
test for comparison of multiple treated groups.11 Rank
tests are attractive for their ability to detect differences
even in the presence of long-tails and/or outliers. Rank-
based randomization tests are also convenient because
they are widely available in statistical software.

Questions of how we might interpret differences be-
tween a test using the test statistic based on means and the
test statistic based on ranks and how we choose the most
appropriate test statistic involve subtle issues worth ex-
ploring. Suppose a researcher uses both the mean-based
and rank-based test statistic. She finds that the p-value
for the mean-based test statistic is well above the standard
0.05 threshold, while the rank-based statistic’s p-value is
below 0.05. What does this imply, other than there are
some responses to treatment that are “unusual”? Answer-
ing that question involves thinking through what “un-
usual” means, which likely depends on the substance and
theory in question. First, suppose the experiment was
based on a formal theory that predicted that all agents
should behave the same, perhaps that all subjects should
be equally generous in a divide-the-dollar game. In the ob-
served outcomes, however, a few subjects were unusually
generous. The question for the experimenter is whether
she believes a few instances of extreme generosity are due
to aberrant subject-level responses or should be treated
as particularly important information about the theory’s
validity. Perhaps she has some evidence to suggest that
the extreme values were due to some subjects not fully
understanding the experiment’s instructions. In this case,
she might choose a rank-based test, such that the extrem-
ity of those values does not exert much influence on the
test of a treatment effect. If, however, she has nothing to
suggest that those observations were not “true” values,
she might think that the mean-based test statistic better
captures what the data have to say about the theoreti-
cal prediction. Similarly, think about the challenges faced
by political psychology experimenters working on ques-
tions of priming and accessibility. Many use the response
time—the time in milliseconds it takes for a subject to

11 Details on both of these tests are available in the appendix.
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perform a categorization task—as a measure of accessi-
bility. When the treatment is a prime, it should make the
relevant construct more accessible and reduce response
times to the corresponding items in the task. The difficulty
is that any brief distraction can wildly inflate the response
time since it is measured in milliseconds. One common
strategy in the literature is to simply drop such obser-
vations (see Nelson, Clawson, and Oxley 1997). A rank-
based statistic provides the experimenter with a princi-
pled method for dealing with the outliers that invariably
occur when response times are the outcome of interest,
enabling them to keep the observations but reduce their
influence on the test of the treatment’s effect. In gen-
eral, we suggest that it can be useful to compare a statistic
based on means to one based on ranks. Differences suggest
a need to make judgments about the nature of unusual
observations.

Estimation

Thus far, we have only discussed the calculation of an
exact p-value for a test of the sharp null hypothesis. Of
course, many experimenters wish to say something about
the size of the treatment effect given the evidence in their
data. That is, experimenters are likely to be interested in
a point estimate for the treatment effect and a confidence
interval for that point estimate. Both interval and point
estimation are both possible within the randomization in-
ference framework. Both, however, require assumptions
that were unnecessary for calculating the exact p-value in
the test of no effect.

Two additional assumptions are needed for inter-
val and point estimation. First, we must assume SUTVA
holds. Second, we must make an assumption about the
nature of response to the treatment. Rosenbaum (2002b)
refers to this second assumption as a model of effects.
Rosenbaum (2002b, chap. 5) outlines a number of differ-
ent models of effects, but the most widely used model of
effects is that of a constant-additive effect, which is the ef-
fect implied by a linear model. That is, we assume that the
treatment raises the response of each unit by a constant
amount: Yi (1) = Yi (0) + � , where � is the treatment
effect.12

A 100(1 − �)% confidence interval for the additive
treatment effect, � , is formed by “inverting” a series of
100(1 − �)% level tests. In short, we conduct a series
of hypothesis tests with nonzero values of �0 using the

12 The model of the effects may or may not correspond to the test
statistic. For example, the constant-additive model of effects may
be used with the average difference of means test statistic as well as
the rank-sum test statistic.

same method we outlined in the second section and keep
the values not rejected at the value of � we have cho-
sen, typically 0.05. For each test, we exploit the fact that
Yi (1) = Yi (0) + � under the null to adjust each observed
outcome by �0 and then conduct a test of the sharp null hy-
pothesis. The calculated p-values enable us to specify the
values at the endpoints of the 100(1 − �)% confidence in-
terval. This method of interval estimation is perhaps best
understood with a simple example. Say we conduct an
experiment testing whether social pressure affects inten-
tion to vote. We measure intention to vote with a 7-point
scale, with higher values indicating a higher propensity to
vote. We observe 12 subjects, six of whom are randomly
exposed to a social pressure cue. We observe the following
outcomes:

Treatment Group = (7, 7, 5, 4, 6, 5)
Control Group = (1, 4, 5, 1, 5, 5).

We use the absolute difference in means across the treated
and control units as our test statistic. Thus, our test statis-
tic has a value of approximately 2.17. First, we test the
usual sharp null hypothesis that the treatment effect is
zero. To calculate an exact p-value, again, we compare
the number of times a test statistic value as large as or
larger than the one we observe occurs relative to the uni-
verse of test statistic values computed from all possible
permutations of the outcomes we observed. In this case,
there are 924 possible ways to form a treatment group of
six subjects from a pool of 12. Comparing the observed
test statistic value of 2.17 to the values from the 924 per-
mutations, we find that the exact p-value is 0.002, and
thus we reject the sharp null hypothesis that the treat-
ment effect is zero. Next, to construct our confidence
interval, we begin by assuming a model of constant ad-
ditive effects. We use that model to test a series of sharp
null hypotheses, testing that �0 = 1 and then �0 = 2 and
so on. In this example, we specify values of �0 in incre-
ments of 1. We then compute adjusted responses accord-
ing to our model of effects, using the equation Yi − �0Ti .
Note that, here, adjustment is to the observed out-
come, which is defined as Yi = Ti Yi (1) + (1 − Ti )Yi (0).
In sum, we subtract the value of �0 for each null hy-
pothesis from the treatment-group observations and
then calculate the test statistic and corresponding exact
p-value in the same way we did with the observed data.
We form the confidence interval from the hypothesis tests
for the values of �0 where we do not reject at a chosen
level of �. The results from this iterative process are in
Table 2.

We form a 95% confidence interval for our treatment
effect, meaning we find the values of �0 where we reject
the null at � = .05. Given the discrete nature of exact
p-values, we may be unable to form a precise 100(1 − �)%
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TABLE 2 Inverting the Null Hypothesis to Form
Confidence Intervals

95% Confidence Sharp Null
Interval Hypothesis Exact p-value

Lower Bound 0 0.002
1 0.048
2 0.234
3 0.701
4 0.727
5 0.251

Upper Bound 6 0.052
7 0.004

confidence interval because we do not observe p-values
right at the � value of 0.05. In our example, we observe
that a null hypothesis of 1 has a p-value of 0.048 and
the null of 6 has a p-value of 0.052. Thus, the smallest
effect we would reject at the approximate 0.05 � level is a
mean difference of 1, and the largest value we would fail
to reject at the approximate 0.05 level is a mean difference
of 6, making our confidence interval [1,6].13 Randomiza-
tion inference confidence intervals such as these maintain
correct coverage regardless of the sample size often by ex-
panding the width of the interval. For example, if the
sample size is small, there may not be enough evidence to
guarantee coverage at � = 0.05. If this is the case, the con-
fidence intervals will widen to whatever level of coverage
the data will support. That is, when we form a confidence
interval, it may be the case that coverage will only hold
for � = .07. The interval is exact in that coverage of the
true parameter can only be guaranteed when � = .07.

Hodges and Lehmann (1963) developed a random-
ization method of point estimation that invokes the same
underlying structure as the calculation of confidence in-
tervals.14 We again focus on � as the treatment effect that
differentiates potential outcomes under treatment and
control for each subject. The Hodges-Lehmann point es-
timator for � is the value of �̂ such that the outcomes
adjusted via the chosen model of effects are exactly with-

13 Of course, in our example, we could have used finer-grained
differences than integers between the tested values of �0. Whether
or not noninteger values are sensible will depend upon what the
outcome measure is. Note that Rosenbaum (2001) calls the series
of sharp nulls that are tested attributable effects. He demonstrates
how this framework can be extended to any experimental design.
He also proves that these attributable effects are a random variable
that maps the different outcomes that might have been observed in
the treatment group under the sharp null hypothesis.

14 The Hodges-Lehmann method of point estimation was first de-
veloped in the context of rank-based test statistics but generalizes
to any test statistic.

out treatment effect. As such, point estimation, like inter-
val estimation, depends directly on the model of effects
chosen by the analyst. For example, with the model of
constant-additive effects, the Hodges-Lehmann point es-
timator for � is the value of �̂ such that the adjusted
responses, Yi − �̂ Ti , are exactly without treatment effect.
Thus, if equation (3) is the test statistic, the estimating
equation for the point estimate is ȳT − ȳC − �̂ = 0. We
solve for the value of �̂ which makes this equation true.
For this test statistic, that will be �̂ = ȳT − ȳC . Note that
this is an estimate of the individual-level treatment effect,
not the average effect. Thus, while difference in means
across treated and control groups is necessarily an unbi-
ased estimator for the average treatment effect, it is only
an unbiased estimator for the individual-level treatment
effect when the model of constant-additive treatment ef-
fects is true.

While point estimation for other test statistics is pos-
sible, interpretation may be more complicated. For rank-
based tests, in particular, the test statistic has a less direct
correspondence with the point estimate. We note that the
Hodges-Lehmann point estimator for ranks is closely re-
lated to test statistics that are based on a difference in
medians and refer the interested reader to Hodges and
Lehmann (1963) for more details. We also note that a
point estimate of the treatment effect is not sensible for
all experimental designs, particularly the more complex.
For example, in two-way factorial designs, there is not a
single parameter that summarizes all treatment effects.

Nonconstant Effects

Underlying the randomization inference approach is the
notion of constant effects—that each subject has the same
response to being treated. Political scientists testing for-
mal theories of behavior or theories of psychological pro-
cesses might be most comfortable with the constant ef-
fects assumption, since the theoretical mechanism is often
thought to be identical across (like) subjects. As long as the
design and analysis proceed by comparing subjects the-
orized to have the same response, the approach is valid.
If theory, however, is not so precise about the expected
heterogeneity or if the design failed to account for het-
erogeneity via a mechanism such as blocking, we may
be left with the more general expectation that for some
units the treatment may have produced a positive effect,
while for other units the effect may be zero or negative.
While we might choose to turn to the Neyman ATE es-
timate because it allows for such heterogeneity, we note
that the ATE estimate does not reveal anything about the
extent of heterogeneity. In contrast, Rosenbaum (2001,
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2003) demonstrates how to use randomization inference
to make inferential statements about the extent of pos-
itive (or negative) effects produced by the treatment.15

This means that not only can we allow for heterogeneity
within the randomization inference paradigm, but we can
also gain some insight into the extent of the heterogeneity.

In brief, the Rosenbaum approach to nonconstant
effects for rank-based statistics is as follows. First, let W
be the test statistic for the test based on the sum of ranks.
Next, we calculate c�, the value at which we would reject
the null for a 1 − � confidence level. We can find this value
with distributional tables or with statistical software. With
these two quantities, we can be (1 − � × 100)% confident
that at least W − c� + 1 of the treated outcomes were pos-
itive (or negative) due to treatment. This value is infor-
mative but must be adjusted for positive treated-control
differences that might occur due to chance. For this ad-
justment, we calculate the expected number of positive
differences under the null hypothesis. Let E (W0) be the
expected number of positive treated-control differences
under the null hypothesis of no treatment effect. For the
rank sum statistic, E (W0) is m(N − m)/2, where N is
the total number of units and m is the number of treated
units. As such, (W − E (W0))/E (W0) is the expected per-
centage of positive differences greater than would be pro-
duced by chance. Thus, we can be 1 − � × 100% con-
fident that W − c� + 1/E (W0) × 100% of the positive
differences were caused by treatment and not by chance
fluctuations.

As an example, we return to the data on social pres-
sure and vote intention used in the previous section. Using
a rank-based test statistic under the constant-additive ef-
fects model, we find the social cue treatment increased
expressed vote intention by 1.5 points on a 7-point scale.
If we relax the assumption of constant effects, what in-
ferences are possible? The rank sum test statistic, W, in
this example is 35.5. In an experiment of this size, with
six treated and six control subjects, if there was no treat-
ment effect, we would expect 6(12 − 6)/2 = 18 positive
differences to occur by chance. Therefore, in all possible
permuted comparisons, a treated unit had a higher ex-
pressed vote intention (35.5 − 18)/18 = 97% of the time.
In some of these comparisons, however, we would expect
a treated unit to have a higher outcome due to chance.
With these data, we reject the sharp null hypothesis at the
0.05 level for any value of W greater than 28, so c0.05 is 28.
At least 35.5 − 28 + 1 = 8.5 of the treated-control differ-
ences were positive because of the treatment. Therefore,
we can be 95% confident that at least 8.5/18 = 47% of this

15 He does this specifically for the sum rank test, the sign rank test,
and Fisher’s exact test.

excess was caused by the treatment and not by accidental
positive differences. In other words, we can be 95% confi-
dent that in all possible permuted comparisons, a treated
unit had a higher expressed vote intention attributable
to treatment 47% of the time. The estimated quantities
here are rather different from the typical point estimate
and confidence interval; we do not estimate the amount of
change caused by treatment, but instead the extent of pos-
itive or negative effects. The insight into individual-level
response to treatment may be particularly useful when
theory has not yet specified an expectation beyond a gen-
eral directional hypothesis, as it may provide empirical
fodder for refinement of theoretical expectations about
effect heterogeneity.

Asymptotic Approximations to
Randomization Tests

While the basis for inference in the randomization in-
ference framework is quite different from the normal
theory underpinnings of the standard statistical toolkit
in political science, it is nonetheless true that some stan-
dard parametric tests can be used as valid asymptotic
approximations to specific randomization tests. Indeed,
Fisher (1935, chap. 21) hypothesized that the t-test could
be derived from the permutations of randomized treat-
ments and that a t-test based on permutations and the
t-distribution should be similar. Hoeffding (1952) later
proved that asymptotically the two tests are equivalent,
justifying Fisher’s belief that the usual t-test can be viewed
as an approximation to the distribution-free exact version
of the test. The results in Hoeffding (1952) also imply
that parametric tests based on the F-distribution in one-
and two-way ANOVA models provide an approximation
to randomization-based tests for multiple treatments.
The convergence of exact and parametric distributions
in large samples also implies that the distinction between
tests for average treatment effects and tests of sharp null
hypotheses becomes less important as the sample size
grows.

Whether or not it is advisable to rely on asymp-
totic approximations to randomization inference tests is
a question worth some consideration. The accuracy of
the approximation for any given application is, of course,
difficult to know unless a direct comparison is made be-
tween the exact test and its asymptotic approximation.
Political science experiments often involve small num-
bers of subjects, however, and in these contexts asymp-
totic approximations provide little comfort. Note that the
asymptotic approximation is based not on the overall
sample size, but the group size for each treatment (i.e.,
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the cell size; Lehmann 1975). And while the impetus for
asymptotic approximations stemmed from the practical
constraints of exact calculations, modern computing en-
ables relatively quick exact calculations for even larger
experiments.

We see one other more nuanced reason to approach
asymptotic approximations with caution. While there are
valid asymptotic approximations for many randomiza-
tion tests, simple alterations of the analysis can render
these approximations incorrect. For example, a bivariate
regression model with treatment status as the indepen-
dent variable provides inferences about treatment effects
identical to those from the t-distribution, which is an
approximation of the randomization distribution. One
might suspect that a multivariate regression model with
added covariates therefore provides a similar approxima-
tion. Freedman (2008a, 2008b) proves, however, that this
is not the case. He demonstrates that for the estimation
of treatment effects, the multiple regression estimator is
biased. The bias goes to zero as the sample size increases
and is typically trivial. The bias arises from the fact that
the linear model assumes treatment effects are constant
across units (Freedman 2008a, 2008b). The real concern,
however, is that the multiple regression model may ei-
ther overstate or understate the estimates’ precision by
surprisingly large amounts. Why should this be the case?
Recall that the usual Gauss-Markov assumptions for the
linear regression model hold that the error terms are inde-
pendent and identically distributed (IID). The difficulty
is that this assumption is directly contradicted by the
potential outcomes model of an experiment used in ran-
domization inference: the errors will vary with treatment
by definition, making the error variance nonconstant.
This nonconstant error variance in a regression model is
usually referred to as heteroskedasticity. Given that het-
eroskedasticity is the barrier to using multivariate regres-
sion to approximate the randomization distribution, one
might assume that the solution is some form of robust
standard errors or perhaps a multiplicative model of het-
eroskedasticity. Neither of these options, however, is the
solution. Lin (2010) demonstrates that for the multivari-
ate regression model to approximate the randomization
distribution, one must use a fully saturated model. That is,
one must include the full set of treatment-covariate inter-
actions. So while one can use the multivariate regression
model to approximate the randomization distribution, it
requires alterations to the model that are not obvious.

A similar mistake can be made if logistic regression
is used to approximate the randomization distribution.
For experiments with a binary treatment and outcome,
randomization inference is possible with either Fisher’s
exact test or the sign test based on binomial sampling.

One might assume that a logistic regression model is an
appropriate approximation to the exact test. Freedman
(2008c) demonstrates that this is not the case. Again, the
difficulty arises from the fact that only the treatment is
stochastic, while the logistic regression model assumes
the outcome is a random binomial process.

Given the possible complications, we strongly em-
phasize that care must be taken with asymptotic approxi-
mations. While there are valid approximations available,
subtle alterations in the mode of testing can result in tests
that are not approximations of the randomization distri-
bution. We have outlined two examples where unless the
analyst is careful what may seem like a harmless asymp-
totic approximation actually does not approximate the
inference justified by randomization. If the asymptotic
approximation is used, however, randomization infer-
ence brings greater clarity to the parametric test. Even
though the distribution used is parametric, the justifica-
tion for that distribution stems from random assignment.
The inference remains local and is focused on uncertainty
about the treatment, and not on sampling from a larger
population.

Parametric Assumptions and Power

Next, we use a comparison of nonparametric confidence
intervals with standard parametric confidence intervals to
illustrate an important point about the way in which the
application of randomization inference techniques can
enable the data from an experiment to speak more clearly
about the evidence produced by the experiment. To form
parametric confidence intervals, one must assume that
the data follow a particular distribution. When the sam-
ple size is small, this essentially adds information to the
data, which will result in confidence intervals that may be
overly narrow and fail to maintain correct coverage (Im-
bens and Rosenbaum 2005). The parametric assumption
is analogous to using an informative Bayesian prior with
the data, and informative priors are most likely to influ-
ence our answer when sample sizes are small. In com-
parison, the confidence intervals from Fisher-style ran-
domization tests maintain correct coverage regardless of
how many observations are used. The exact 100(1 − �)%
confidence set for the treatment effect estimate will al-
ways maintain its stated coverage of 100(1 − �)%. That
includes, importantly, that when the data do not con-
tain enough information, the interval may achieve this
coverage by becoming infinite in length (Imbens and
Rosenbaum 2005). That is, we may find that there are
no values of the sharp null hypothesis where we are able
to reject at a chosen confidence level. This, we think, is
an attractive feature of these nonparametric confidence
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intervals: they reveal whether additional data are required
to increase the power of the test in order to say something
substantively meaningful.

Consider an example from an experiment we con-
ducted. In the experiment, subjects in the treatment group
viewed a story from the local newspaper about a mugging.
The control group was exposed to a story from the same
local newspaper about changes to the iPhone. Subjects
were then asked to rate whites and African Americans on a
set of stereotype items. The difference in subjects’ attribu-
tion of stereotype traits to whites and African Americans
measures whether the treatment caused subjects to rate
African Americans lower relative to whites when primed
on the topic of crime. Our experiment had 19 subjects
in the control condition and 22 subjects in the treatment
condition. If we proceed with a standard parametric anal-
ysis based on the t-test, the difference in mean ratings is
−1.3. That is, subjects in the treatment condition rated
African Americans 1.3 points lower than whites on the
stereotype scale. The normal theory confidence interval
for this estimate is [−2.47, −0.19]. The point estimate for
the treatment effect from the rank sum test is seemingly
similar in substantive terms, at−1.5, with an exact p-value
of 0.004. The confidence interval for the nonparametric
estimate, however, is [−∞, 0]. Using the randomization
test in this case reveals that there is not enough informa-
tion in the data to say anything more about the treatment
effect other than it is negative. To be more specific about
the treatment effect would require us to invoke a para-
metric assumption or repeat the experiment with more
subjects.

This somewhat minor point raises controversial is-
sues in statistical inference. A Bayesian might argue that
in small samples informative priors are necessary since
the data have little to tell us. Better here to rely on sub-
stantive knowledge and impose a prior. In fact, the para-
metric t-test can be thought of as a Bayesian estimate with
an uninformative prior. The difficulty is that, as we have
demonstrated in this example, this obscures important in-
formation about statistical power. In our example, we see
that by assuming the data are distributed normally adds
information to the data resulting in confidence intervals
that are overly narrow unless the parametric assumption
is correct. With the nonparametric test, we observe that
the treatment effect is clearly negative, and we can reject
the null that the sharp null is zero, but we would conclude
that to learn more about the treatment effect requires a
larger sample size. While one might be willing to defend a
flat prior, the parametric assumption, here, is troubling.
We argue it is better to know that the experiment as con-
ducted does not have enough power to rule out a variety
of null hypotheses and to know for future iterations of

the experiment that a larger number of subjects is needed
for more precise inferences.

Statistical Tests with Randomization
Inference for Political Science

Given that a randomization test needs to be built from the
probability model used for treatment assignment, there
are a wide variety of tests to fit various experimental de-
signs. Clearly we cannot review them all here. The inter-
ested reader and practitioner will likely need to seek out
various additional sources. Though texts on nonpara-
metric statistics should cover many of the possible tests,
they often fail to show the link between each test and the
randomization mechanism in the experimental design.
One notable exception is Lehmann (1975), who derives
common rank-based nonparametric tests from random
assignment of treatment. Higgins (2003) is a recent text
that provides the randomization-based justification for
tests in a wide variety of experimental designs, including
both mean- and rank-based test statistics. In the statistics
literature, the rank-based test statistics that we discussed
earlier are quite popular, and thus many lucid discussions
of randomization inference there (see Rosenbaum 2002b,
chap. 2) focus almost entirely on rank-based tests. The
appendix to this article contains a basic introduction to
rank-based tests, including those for two-way factorial
designs. The latter may be of particular interest as we
have found that coverage of randomization tests for two-
way factorial designs is quite rare, while such designs are
relatively common in the social sciences.

Examples from Political Science
Experiments

Having laid out our case for randomization tests, we now
turn to applying these tests to two datasets from polit-
ical science experiments. We use a dataset from Fowler
and Kam (2007), whose published results represent a
rare example of the use of randomization tests in po-
litical science, and part of a dataset produced by White
(2003) from which results have not been previously pub-
lished. Both experiments were performed on convenience
samples—one relying entirely on student subjects and the
other recruiting both students and nonstudent adults. We
compare the results from standard statistical tests to those
from randomization tests. In addition to offering a more
direct estimate of the type of uncertainty that concerns
the experimentalist, we find that randomization tests can
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produce p-values that would lead to different substantive
conclusions.

Partisan Generosity

Fowler and Kam (2007) performed a series of experiments
to test a set of hypotheses about individuals’ propen-
sity to give to others. The authors brought student sub-
jects into a laboratory environment and asked them to
play a dictator game, wherein each subject was given
a set of 10 lottery tickets and asked to divide the tick-
ets between themselves and an anonymous recipient. By
manipulating the identity of the anonymous recipient,
Fowler and Kam intended to test for differences in giving
that could be attributed to the effects of social identities.
Thus, three experimental conditions were employed, the
treatment being the identity of the recipient: no iden-
tifying information, registered Democrat, or registered
Republican.

Among Fowler and Kam’s expectations was the hy-
pothesis that subjects would display an ingroup prefer-
ence and thus give more when the recipient was revealed
to be in the same party as themselves. One way to use their
data to assess this hypothesis is to compare the amounts
given to the recipient when: (1) the subjects’ partisan
identities matched the recipient, (2) the subjects’ identi-
ties diverged from the recipient, and (3) the subjects had
no information about the identity of the recipient. The au-
thors looked at these comparisons separately among those
who strongly identified with their party label and those
who weakly did so; we do the same. In the replication, we
perform three different tests. First, we use the standard
one-way ANOVA. We next use a randomization test where
the test statistic is an F-test statistic from the same ANOVA
table but the p-value is calculated from all permutations
of the data. Finally, we calculated the Kruskal-Wallis test
based on ranks. This allows us to compare different test
statistics under the randomization testing paradigm. In
Table 3, we display, side-by-side, the p-values from the
three tests across the three conditions for the two par-
tisan groups. Among the weak partisans, the differences
are minimal. For the strong partisans, the permuted test
provides a p-value similar to the standard test. Among
strong partisans, in fact, the decrease is enough to change
whether or not the null hypothesis would barely be re-
jected at the conventional .05 level.

If the researchers had specific hypotheses about dif-
ferences not across all three conditions, but rather across
any two, we could employ either a permuted difference
in means or a rank sum test as an alternative to the
asymptotic approximation provided by the t-test on the

TABLE 3 Exact versus Asymptotic
Approximation Comparisons

ANOVA and Kruskal-Wallis p-value Comparisons

Permuted Kruskal-
ANOVA F-test Wallis

Strong Partisans 0.055 0.043 0.007
Weak Partisans 0.515 0.521 0.5137

t-test and Wilcoxon Rank Sum p-value Comparisons

Permuted
t-test t-test Rank Sum

Ingroup vs. Control 0.050 0.053 0.015
Ingroup vs. Outgroup 0.029 0.025 0.003

Note: There are 127 subjects per cell for the tests in rows 1, 3, and
4, and 125 subjects per cell for the second-row tests.

difference in amounts given.16 For example, the re-
searchers might have specifically expected a difference
in subjects’ giving in the same-party recipient condition
as compared to the “control” condition where no infor-
mation about the recipient is given. Alternatively, they
might have been interested specifically in the difference
in giving when the recipient is identified with the ingroup
as compared to when the recipient is identified with the
outgroup. Here, we compare a standard t-test to a per-
muted t-test and the rank sum test for Fowler and Kam’s
data that would be used to test these two pair-wise com-
parison hypotheses among strong partisans. The results
from the three tests are in Table 3. The asymptotic t-test
does provide similar results to the permuted t-test. The
test statistic based on ranks provides greater power once
again.17 So with a rank-based test statistic, the chance that
random assignment would produce such a level of parti-
san generosity among strong partisans is well below 1%;
therefore, this provides strong evidence against the null
hypothesis of no treatment effect.

Closer examination of the data reveals that a few
subjects gave away an unusually large number of lottery
tickets. The rank-based statistic helps reveal this pattern in
the data. How one should interpret these outliers is open
to question. Is some subset of the subjects more likely to

16 The t-test in this instance can be interpreted as either a test of
whether the ATE is different from zero or an asymptotic approxi-
mation to the test of the sharp null under the randomization test.

17 Note that if we proceeded through a series of pair-wise tests to test
for differences across conditions, we would really want tests that
account for the multiple comparisons we were making. Appropriate
randomization tests exist (Hollander and Wolfe 1999), or one could
simply use a Bonferroni correction.
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FIGURE 1 Attributable Effects Against Exact p-values for
Dictator Game
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be responsive to treatment, or is some subset always going
to be unusually generous in any dictator game scenario?
These are not questions that can be answered here, but
the rank-based test does help bring attention to the fact
that some subjects gave away unusually large amounts.

For one-way factorial designs such as used here, there
is not a summary statistic for the effect, just a p-value for
the test, which is often reported with treatment condition
means. Under the randomization inference framework,
we can develop a more general point estimate with ap-
propriate confidence intervals. We use the average me-
dian difference across the three partisan categories as a
test statistic for the one-way design. That is, we calculate
the median number of lottery tickets given away across
the three treatments and take the average. This provides
us with a measure of how behavior changed across the ex-
perimental conditions. The next step is to select a model
of effects. We adopt the usual constant-additive model of
effects, assuming that the treatment effect is constant and
additive across each condition. We use the observed sum-
mary statistic for the data as the point estimate, which
here is 2: the average median difference across treatment
categories was two lottery tickets. To form a confidence
interval, we specified integers from −10 to 10 as the val-
ues for A, the range of null hypothesis values. For each
value in the range of A, we subtracted this value from the
outcomes of the out-party condition, then calculated the
approximate exact p-value based on the true null distri-
bution. We next construct a confidence interval for this
estimate. Given the discrete nature of exact p-values, we
do not observe a value at the point necessary to construct
a 95% confidence interval; we draw the 91% confidence
interval instead. In Figure 1, we plot the exact p-value
against the range of null hypotheses. Based on the ran-

domization null distribution, this point estimate has a
91% confidence interval of [0, 5]. This example demon-
strates how one can easily move beyond simply reporting
a p-value for more complex designs and construct confi-
dence intervals and point estimates for interesting features
in the design.

Racial Cues

In our second example, we analyze data from White
(2003). White designed an experiment to test the effects
of two types of racial cues in political communication: a
source cue and a racial frame. The treatment received by
all subjects was a news magazine article laying out argu-
ments for opposition to the war in Iraq; the article was
manipulated across conditions to vary both the frame of
the opposition argument and the source of the article.
Two frames were employed in the experiment: an explic-
itly racial frame and an implicitly racial frame. Each of
the frames was presented inside a news story appearing
in either a black news magazine (Black Enterprise) or a
mainstream news magazine (Newsweek). Thus, the ex-
periment is a 2 x 2 factorial design with a total of four
conditions, and subjects were randomly assigned to the
conditions. Subjects were then asked to report their level
of belief, on a 1–7 scale, in three arguments about the war:
that the United States should wait for UN Security Coun-
cil approval, that Iraq had chemical weapons, and that
President Bush’s handling of Iraq was approvable. The
experiment was run separately on both white and black
subjects, as the theory implied that blacks and whites
would respond differently to the treatments.

Among the expectations was the hypothesis that
blacks would be persuaded to be less supportive of the
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war and less receptive to arguments used to justify the
war when they were exposed to any of the racial cues.
Additionally, it was hypothesized that the effect of the
frame might depend on the source in which the article
appeared, notably that the two types of racial cues (source
and frame) might have mutually reinforcing effects. Thus,
the frame was postulated as the modifying factor. We con-
centrate on these hypotheses and only analyze the data
from the black subjects. Given that this is a two-way de-
sign, we test for two “main” effects and for an interaction.
We assessed these hypotheses using a standard two-way
ANOVA model which provides an asymptotic approxi-
mation to the randomization distribution and the rank-
based test statistic outlined in the appendix. For each of
the permutation tests, we used 10,000 permutations to
form the null distribution, though we found that using
1,000 permutations made little difference. That is, we
took 10,000 random permutations of the data and calcu-
lated the test-statistic to form a null distribution. Table 4
contains a comparison of the p-values that resulted from
both the standard two-way ANOVA and the rank-based
method. We report the results for both methods across
three tests for each outcome variable: a test of the effect of
the racial cue for each of the two media source treatments
and a test of whether those two effects differ.

In this experiment, we find that the randomization
tests produce generally lower p-values for the test of the
interaction, often changing whether or not the null hy-
potheses would be rejected. In the first example, our infer-
ence is maintained but the difference in p-values is 0.13.
For the other two outcomes, we narrowly conclude that
an interaction is present based on the asymptotic test.
The randomization-based inference, however, provides
stronger evidence that an interaction is present. While
the randomization inference in this instance lowers the
p-value in all three instances, such differences cannot be
assumed to hold in other data sets.

Conclusion

While experiments offer considerable leverage on
questions of causal inference, the traditional statistical
methods political science experimenters have had at
their disposal have limited their potential. The standard
tools, justified by the standard model of inference, are
ill-suited to the experimenter’s main statistical question:
the estimation of the internal validity of their inferences.
Adopting the randomization inference model shifts the
question from characterizing uncertainty about whether
a random sample is representative of a population, to that
of uncertainty about how responses the subjects exhibited

TABLE 4 Comparison of Asymptotic and
Permuted p-value for Two-Way
ANOVA

Approx.
Parametric Exact

p-value p-value

Security Council Approval
for War
Racial Cue within Media

Source Level 1
0.353 0.235

Racial Cue within Media
Source Level 2

0.546 0.464

Cue × Source
Interaction

0.292 0.162

Iraq Has Chemical
Weapons
Racial Cue within Media

Source Level 1
0.054 0.037

Racial Cue within Media
Source Level 2

0.589 0.373

Cue × Source
Interaction

0.047 0.026

Approve George W. Bush
Racial Cue within Media

Source Level 1
0.051 0.013

Racial Cue within Media
Source Level 2

0.585 0.361

Cue × Source
Interaction

0.082 0.015

Note: Approximate exact p-values based on 10,000 permutations
of the data. Cell sizes range from 23 to 28.

under one random allocation of treatment compare to
the unobserved responses these same individuals would
have displayed under an alternate random allocation of
treatment. Thus, not only does this model of inference
focus directly on the experimenter’s main quantity of in-
terest, but it also frees the experimenter from assumptions
about the subject sample. Samples of convenience—even
Fisher’s (1935) single subject in his famous Lady Tasting
Tea example—are justified as valid for providing statis-
tical evidence about the causal question at hand. And the
randomization framework even makes sense of the appli-
cation of traditional statistical tools to experimental data
where such tools are justified as asymptotic approxima-
tions to randomization inference tests; a standard t-test
applied to experimental data gains conceptual coherence
when the p-value can be interpreted as an estimate
of the uncertainty introduced by random assignment.
Randomization tests, we have also shown, offer the ability
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to avoid parametric assumptions, confidence intervals
that are informative about testing power, and a capacity
to change substantive inferential conclusions.

The randomization inference framework can also be
extended in many ways that we did not review here.
Rosenbaum (2002a) outlines a method for covariance
adjustment that is fully integrated with randomization
tests and is easy to implement. Such covariate adjust-
ment can be helpful for increasing the power of a test.
There are also randomization tests for block designs and
within-subjects experiments. Hansen and Bowers (2009)
adapt the randomization framework to an experimental
design with clustering and noncompliance. Rosenbaum
(2002b) uses randomization inference as a basis for sen-
sitivity analysis in observational studies. As advances in
computing continue, randomization inference tools are
increasingly finding their way into common statistical
software packages. Familiarity seems the only remaining
impediment to the integration of the randomization in-
ference approach into the methodological toolkit of the
experimenter in political science.
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Additional Supporting Information may be found in the
online version of this article:
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Additional Information on Strengthening the Ex-
perimenter’s Toolbox: Statistical Estimation of Internal
Validity

Table A1: Asymptotic Relative Efficiency of Rank
Sum Test and t-test

Please note: Wiley-Blackwell is not responsible for the
content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing
material) should be directed to the corresponding author
for the article.


