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HOW STRONG IS STRONG ENOUGH?
STRENGTHENING INSTRUMENTS THROUGH

MATCHING AND WEAK INSTRUMENT TESTS∗
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Penn State University† and The Ohio State University‡

In a natural experiment, treatment assignments are made through
a haphazard process that is thought to be as-if random. In one form of
natural experiment, encouragement to accept treatment rather than
treatments themselves are assigned in this haphazard process. This
encouragement to accept treatment is often referred to as an instru-
ment. Instruments can be characterized by different levels of strength
depending on the amount of encouragement. Weak instruments that
provide little encouragement may produce biased inferences, partic-
ularly when assignment of the instrument is not strictly randomized.
A specialized matching algorithm can be used to strengthen instru-
ments by selecting a subset of matched pairs where encouragement
is strongest. We demonstrate how weak instrument tests can guide
the matching process to ensure that the instrument has been suffi-
ciently strengthened. Specifically, we combine a matching algorithm
for strengthening instruments and weak instrument tests in the con-
text of a study of whether turnout influences party vote share in
US elections. It is thought that when turnout is higher, Democratic
candidates will receive a higher vote share. Using excess rainfall as
an instrument, we hope to observe an instance where unusually wet
weather produces lower turnout in an as-if random fashion. Consis-
tent with statistical theory, we find that strengthening the instrument
reduces sensitivity to bias from an unobserved confounder.

1. Gifts of nature.

1.1. Natural experiments. In the social sciences, analysts are often inter-
ested in the study of causal effects, but in many contexts randomized exper-
iments are infeasible. When this is the case, one alternative is to search for
“natural experiments” where some intervention is thought to occur in an as-
if random fashion, thus approximating a randomized experiment. Analysts
search for such “gifts of nature” as a strategy for estimating unbiased casual
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effects (Rosenzweig and Wolpin 2000, pg. 872). Many view natural experi-
ments as a close second best to a true randomized experiment (Angrist and
Pischke 2010; Dunning 2012).

In a natural experiment, some units either obtain or are denied treatment
in a haphazard manner. The general hope is that nature has reduced biases
that may interfere with our ability to observe causal effects. The difficulty,
of course, is that haphazard assignment to treatment may be a far cry from
a randomized experiment, where randomization is a known fact. As a re-
sult, many natural experiments require more complex forms of statistical
adjustment than would be necessary for a randomized experiment. For ex-
ample, matching methods are often used to increase comparability across
treated and control groups in a natural experiment (Baiocchi et al. 2010;
Keele, Titiunik and Zubizarreta 2014; Zubizarreta, Small and Rosenbaum
2014). It is such adjustments that render natural experiments closer in form
to observational studies. In some instances, however, we may wish to aid
haphazard assignment in a different way. That is, we may wish to find units
that are more disparate than naturally rendered by circumstance. Here we
consider one of those instances.

1.2. A natural experiment studying the effect of turnout on vote share. It
is often assumed that many of the Democratic party’s natural constituencies
are less likely to vote on election day. That is, younger voters, minorities,
and citizens with lower levels of income often vote less frequently (Wolfinger
and Rosenstone 1980; Nagler 1991; Keele and Minozzi 2012). The logical
conclusion to the evidence that these groups tend to vote Democratic is
that higher levels of voter turnout should result in increased vote share for
Democratic candidates (Hansford and Gomez 2010). One major difficulty
with evaluating this proposition is that there may be common causes for
both voter turnout and vote share. If such common causes are unobservable,
we should be hesitant to draw causal inferences about turnout and vote
share. Alternatively, one strategy is to determine whether there is some
source of variability in turnout that does not reflect individual choices about
voting but is, instead, by chance. Although the choice to vote on election
day is determined by many factors such as interest in politics, exposure to
mobilization efforts, and socio-economic status, there may be a factor that
could haphazardly encourage or discourage participation on election day.

Here, we focus on a haphazard contrast first used by Hansford and Gomez
(2010). That is, bad weather may serve as a haphazard disincentive to voting.
While civic duty and political interest may induce political participation, for
many voters a soggy day may be enough to dissuade a trip to the voting
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booth (Gomez, Hansford and Krause 2007). That is, rainfall, specifically
unusually wet weather or excess rainfall, serves as a haphazard nudge to not
vote. In the language of research designs, rain may serve as an instrument.
An instrument is a random nudge to accept a treatment. This nudge to
accept treatment may or may not induce acceptance of the treatment, and
the nudge can affect the outcome only through the treatment. In our study,
we seek to compare locations that have similar observable characteristics,
but where one location had unusually wet weather on election day. In our
design, rain serves as random nudge against voting that we assume can only
affect the outcome, vote share, through turnout.

What question can we answer using an instrument as a natural experi-
ment? Conditional on a set of identification assumptions, we seek to estimate
the causal effect of turnout on vote share for the subset of places that voted
at a lower rate when subjected to an unusual amount of rainfall on election
day, but would have voted at a higher rate if it had not rained. As such, our
estimand only refers to those places that respond to the rainfall instrument:
the places that are sensitive to unusual rainfall patterns on election day.

We use the excess rainfall instrument to illustrate how an instrumental
variables analysis can be conducted using matching algorithms; specifically
matching methods that can strengthen an instrumental variable (Baiocchi
et al. 2010; Zubizarreta et al. 2013). We extend those matching methods by
pairing them with tests for weak instruments from the economics literature
(Stock and Yogo 2005). We demonstrate how weak instrument tests can be
used to aid the matching process such that the analyst can know whether
a strengthened instrument is strong enough or whether the matching may
need further refinement.

1.3. Review of key concepts: instrumental variables and weak instruments.
As we noted above, an instrument is a nudge to accept treatment. As applied
to natural experiments, an instrument, such as rainfall, is meant to mimic
the randomized encouragement design (Holland 1988). In the randomized
encouragement design, some subjects are randomly encouraged to accept
treatment, but some subset of the subjects fail to comply with the encour-
agement. Subject to a set of causal identification assumptions, the method
of instrumental variables can be used to estimate the effect of the treatment
as opposed to the effect of the encouragement. The causal effect identified by
an instrument is often referred to as local average treatment effect (LATE)
or complier average causal effect (CACE) (Imbens and Angrist 1994).

Identification of the IV causal effect requires five assumptions as outlined
by Angrist, Imbens and Rubin (1996). One of these assumptions, the ex-
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clusion restriction, receives considerable attention. Under this assumption,
we must assume that the instrument has no direct effect on the outcome.
In our application, the exclusion restriction implies that excess rainfall af-
fects vote share only by reducing turnout on election day. To violate the
exclusion restriction, excess rainfall must influence vote share directly. That
is, there must be some aspect of precipitation patterns that change par-
tisan preferences in an election, which seems unlikely. The use of rainfall
deviations further bolsters the case for the exclusion restriction, since even
if weather patterns did directly affect vote preferences, it seems less likely
that a haphazard deviation from normal weather alters voter preferences in
any significant way. Thus, while we cannot verify that the exclusion restric-
tion holds, it appears to be plausible in this application.

While the exclusion restriction requires careful evaluation, two of the other
IV assumptions are often unlikely to hold exactly when the instrument is
haphazardly assigned, as would be the case with rainfall patterns on elec-
tion day. One of these assumptions is that the assignment of the instrument
must be ignorable, or as-if random. In the encouragement design example,
so long as the investigator assigns encouragement status through some ran-
dom mechanism, such as a coin flip, this assumption will hold by design. In
natural experiments, it is often unclear that instrument ignorability holds
since assignment to encouragement happens through some natural, haphaz-
ard process and is not a controlled, probabilistic assignment mechanism. For
any natural experiment, the possibility always remains that the instrument
is not as-if randomly assigned. Analysts can use a sensitivity analysis to
observe whether study conclusions are sensitive to this assumption (Rosen-
baum 2010, 2002a, ch. 5).

Additionally, the instrument must have a nonzero effect on the treat-
ment. However, even when that effect is nonzero, instruments may be weak.
An instrument is said to be weak if manipulation of the instrument has
little effect on treatment (Staiger and Stock 1997). When the instrument
has a weak effect on the treatment, poor coverage of confidence intervals
can result. In fact, the most common method of estimation used with in-
strumental variables, two-stage least squares (2SLS), can produce highly
misleading inferences in the presence of weak instruments (Bound, Jaeger
and Baker 1995). IV estimation with 2SLS takes identification of the IV
estimand as given, and asymptotic approximations for standard errors and
confidence intervals can incorrectly suggest strong treatment effects even
when such effects are nonexistent. In our application, while rainfall explains
some variation in turnout, it explains a fairly small portion of that variation.
Note in our application there is single weak instrument, which is a distinct
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problem from the case with many weak instruments. When there are many
weak instruments, 2SLS produces biased point estimates as well as standard
errors that are too small (Staiger and Stock 1997). See Chamberlain and
Imbens (2004); Chao and Swanson (2005) for statistical models for many
weak instruments.

In short, prima facie, we might suspect that rainfall is not as-if randomly
assigned on election day, and may be a weak instrument. However, for an
instrument like rainfall we cannot consider the problem of ignorable instru-
ment status as separate from the difficulties caused by weak instruments.
Small and Rosenbaum (2008) show that when an instrument is weak even
small departures from ignorability of instrument assignment status produces
bias even in large samples. Small and Rosenbaum (2008) also prove that a
strong instrument is more robust to departures from ignorability even in
smaller sample sizes. Thus they show that if ignorability does not hold, a
smaller study with a stronger instrument will be less sensitive to bias than
a weak instrument used in a much larger study. Below we outline and ex-
tend a matching method designed to combat the difficulties that arise when
instruments are weak and not as-if randomly assigned.

1.4. Data: covariates and measurement. The data describe vote share
and turnout at the county level for the 2000 US presidential election. Turnout
is measured as a percentage of votes cast for presidential candidates divided
by the voting age population, while vote share is measured as the percentage
of the the two-party vote share received by the Democratic presidential can-
didate. Overall, the data set includes more than 1900 counties across 36 US
states.1 The year 2000 is hospitable to our project, since across the country,
there was a large variation in rainfall on election day. In several other presi-
dential election years, there was little rainfall in most places across the US.
For the rainfall instrument, we use the covariate developed in the original
analysis, which is measured as excess rainfall (Gomez, Hansford and Krause
2007). It is the difference between the amount of rainfall recorded on elec-
tion day and the average rainfall in the period around election day. Thus
positive (negative) values indicate greater (lesser) than average rainfall. So
under this design, we examine whether unusually rainy weather discourages
turnout.

In our analysis, we added several covariates that are likely to be related
to turnout and electoral outcomes based on past research in political science
(Wolfinger and Rosenstone 1980; Nagler 1991). These covariates include the

1As in the original paper, we also exclude Southern counties from the data, since histor-
ically turnout in the South is affected significantly by more restrictive voting requirements.
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natural log of county population, the proportion of black and Hispanic res-
idents in the county, educational attainment measured by the percentage
of high school and college educated residents, the natural log of median
household income, and the county poverty rate. These covariates should be
balanced if the rainfall instrument is as-if randomly assigned. We might
also consider whether turnout and vote share in 1996 or 1998 were also bal-
anced, but since these measures could be affected by the instrument (rainfall
in previous years) and treatment (turnout in previous elections), we exclude
measures of this type from the analysis to avoid bias from conditioning on
a concomitant variable (Rosenbaum 1984).

1.5. Outline of the paper. In Section 2 we review optimal nonbipartite
matching and how it may be used to strengthen instruments such as rain-
fall. This form of matching allows us to form matched pairs that are close
as measured by covariates, but are distant in terms of the amount of ex-
cess rainfall on election day. We also introduce a new search criterion for
the matching based on weak instrument tests. The proposed search crite-
rion allows analysts to readily understand whether a proposed match has
sufficiently strengthened the instrument. Sections 3 and 4 present results
from our case study. We report results from three matches in Section 3. In
Section 4, we estimate causal effects and use a sensitivity analysis to assess
whether hidden bias might alter our inference under the stated assumptions.
Section 5 concludes.

2. Optimal nonbipartite matching to control for overt biases and
strengthen instruments.

2.1. Notation. First, we introduce notation for the paired randomized
encouragement design(Rosenbaum 1996, 2002b). It is this experimental de-
sign that IV with matching mimics. There are I matched pairs, i = 1, . . . , I,
and the units within matched pairs are denoted with j ∈ {1, 2}. We form
these pairs by matching on observed covariates, xij , which are measured
before assignment to the instrument. Let Wij denote the value of the instru-
ment, excess rainfall, for county j in possible pair i. We wish to form matched
pairs, such that Wi1 > Wi2 in each pair. That is within matched pairs, one
county is discouraged to accept a higher dose of treatment (turnout) by a
higher level of excess rainfall. We denote the county with a higher value for
Wij as Zij = 1, and the other county with a smaller value for Wij is denoted
by Zij = 0, so that Zi1 + Zi2 = 1 for i = 1, . . . , I. If Zij = 1 the unit is
discouraged to a greater extent and county ij receives treatment at dose
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dT ij , and if Zij = 0 county ij receives treatment at dose dCij , where the
subscript T denotes treatment and C denotes control.

Consistent with the potential outcomes framework (Neyman 1923; Rubin
1974), these doses, however, are potential quantities, which implies that we
do not observe the pair (dT ij ,dCij). We do observe the dose actually received,
which is Dij = ZijdT ij + (1− Zij)dCij . Each subject also has two potential
responses, which we denote as rT ij if Zij = 1 or rCij if Zij = 0. As with the
doses, we do not observe the pair of potential outcomes, (rT ij , rCij), but we
do observe the responses, Rij = ZijrT ij + (1− Zij)rCij .

2.2. Matching to increase instrument strength. A natural experiment
may produce an instrument that is characterized as weak. An instrument
is weak if dT ij is close to or equal to dCij for most individuals ij. In other
words, an instrument is weak when most units ignore the encouragement to
take the treatment. With a continuous instrument, such as excess rainfall,
we might imagine that the ideal matched pair of subjects ik and il would
have xik = xil but the difference, Wik −Wil, would be large. That is, these
units should be identical in terms of observed covariates but one of the units
is strongly encouraged to take a high dose of the treatment while the other
is not. Such a match creates comparable units with a large difference in
terms of encouragement allowing for a stronger instrument. How might we
implement such a match?

Baiocchi et al. (2010) demonstrate how to use nonbipartite matching with
penalties to implement this ideal IV match. Penalties are used to enforce
compliance with a constraint whenever compliance is possible, and also to
minimize the extent of deviation from a constraint whenever strict compli-
ance is not possible. Thus the matching algorithm attempts to minimize
distances on observables within matched pairs subject to a penalty on in-
strument distance as measured by Wi1 − Wi2, the distance between the
observations in the matched pair on the instrument. The distance penalty,
p, is defined as

(1) p =

{
(Wi1 −Wi2)

2 × c if Wi1 −Wi2 < Λ
0 otherwise

where Λ is a threshold defined by the analyst. Note that the scale for Λ
depends on the metric for Wij . The penalty, p, is defined such that a smaller
value of Wi1−Wi2 receives a larger penalty making those two units less likely
to be matched, while c scales the penalty to that of the distance matrix.
See Rosenbaum (2010, Sec. 8.4) for a discussion of penalties in matching.
Matched distances on the instrument less than Λ receive larger penalties
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and thus are less likely to be matched. The result is that units that are alike
on observables but more different on the instrument tend to be matched.

To be fully effective, however, the penalized matching generally must be
combined with “sinks” (Lu et al. 2001). Matching with penalties alone tends
to produce some matched pairs that are distant on the instrument but have
suboptimal within matched pair distances on observables. That it, strength-
ening the instrument often makes covariate balance worse. To improve bal-
ance, we use sinks to discard the observations that are hardest to match
well. To eliminate e units that create the suboptimal matches, e sinks are
added to the data before matching. We define each sink so that it has a
zero distance between each unit and an infinite distance to all other sinks.
This will create a distance matrix of size (2I + e) × (2I + e). The optimal
nonbipartite matching algorithm pairs e units to the e sinks in such a way
to minimize the total distance between the remaining I− e/2 pairs. That is,
by pairing a unit with a sink, the algorithm removes the e units that would
form the e set of worst matches. Thus the optimal possible set of e units are
removed from the matches.

The matching algorithm, then, creates the optimal set of matched pairs
that are similar in terms of covariates but differ in levels of encouragement
(Baiocchi et al. 2010). Moreover, any matched units for which it’s difficult to
balance and increase distance on the instrument are excluded from the study.
This leads to a smaller study in hopes of strengthening the plausibility of
the IV analysis. This form of matching is consistent with efforts to focus on
smaller homogeneous subsets of the data because comparability is improved
and sensitivity to unobserved bias is lessened (Rosenbaum 2005). Both Lorch
et al. (2012) and Baiocchi et al. (2012) present examples of this type of near-
far match in medical applications. Zubizarreta et al. (2013) shows how one
can implement a near-far match with integer programming, so the analyst
can impose different types of balance constraints on different covariates,
while also strengthening the instrument.

2.3. A new search criterion for stronger instrument matching. Through
the use of penalties, we can form a set of matched pairs where the instrument
strength, as represented by the within pair distance on the instrument, is
larger than occurs without penalties. One question remains: how strong
does the instrument need to be? The matching process increases relative
instrument strength, but it is silent on how large we should seek to make
the difference on the instrument within matched pairs. What would be useful
is some absolute standard of instrument strength that we might use to select
the matching parameters.
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The literature on weak instrument tests in econometrics suggests an abso-
lute standard that we might employ to guide the matching. First, we review
weak instrument tests, and then we incorporate a weak instrument test into
the matching process. Stock and Yogo (2005) suggest the following test for
a weak instrument based on

(2) Di = γWi + νi

which in our application is turnout, Di, regressed on excess rainfall, Wi, and
we assume νi is independent of Wi, since the instrument is as-if randomly
assigned. The concentration parameter is a unitless measure of instrument
strength and is defined as:

µ2 =
γWiWiγ

σ2ν

where, σ2ν , is the variance of the residual term in Equation 2. Stock and
Yogo (2005) use the F -statistic for testing the hypothesis that γ = 0 as an
estimator for µ2. However, using F to test the hypothesis of nonidentifica-
tion (γ = 0) is not a conservative enough test for the problems caused by
weak instruments. Stock and Yogo (2005) recommend using F to test the
null hypothesis that µ2 is less than or equal to the weak instrument thresh-
old, against the alternative that it exceeds the threshold. When there is a
single instrument, the first-stage F statistic must generally exceed 10 for the
instrument to be sufficiently strong (Stock and Yogo 2005).

In the context of strengthening instruments, we expect µ2, as measured
through the F -test, to increase as Λ gets larger. This suggests that the weak
instrument test contains useful information about how to select Λ. When
matching to strengthen the instrument, the analysts must select both Λ, the
threshold at which penalties are enforced based on instrument strength, and
e, the number of sinks. Each combination of these two parameters produce
a match with a specific instrument strength and sample size. The analyst
must then select one match based on these two parameters as a final match.
We augment this part of the design process with the weak instrument test.

First, we treat the matching process as a grid search over both Λ and e.
For each combination of Λ and e, we perform the weak instrument test by
estimating a regression of Di on Wi using the matched data without any
other covariates. From this regression model, we record the F -test statistic
and the R2. We then use a surface plot to examine instrument strength for
combinations of Λ and e. The plot allows the analysts to clearly see which
combination of Λ and e produce a match where the instrument may be
deemed sufficiently strong. We can also add a contour line to the plots at
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the point where F ≥ 10 to demarcate the region where the combination of e
and Λ produce a match where the instrument is sufficiently strong. While it
is true that these F -statistics will be highly correlated especially around the
line demarcating those matches that are weak and strong as characterized
by the test, we still think the information is useful. While we could correct
for multiple testing, this threshold serves as a useful heuristic and in general,
analysts should pick a match well beyond the F = 10 threshold, especially
when instrument assignment does not appear to be strictly as-if random. As
an additional guide, we can create a similar plot that records the R2 from
the weak instrument test regression.

3. The nonbipartite match.

3.1. Covariate balance before matching. Before matching, we assess whether
excess rainfall follows an as-if random assignment pattern. If excess rainfall
is a valid instrument, we should expect that characteristics like levels of ed-
ucation and income to be balanced between counties with normal and those
with unusual amounts of rainfall on election day. We do that by determining
whether the covariates were balanced by rainfall patterns. All counties that
experienced greater than normal rainfall were considered part of the treated
group and all other counties were considered to be the control. There were
1233 counties (64% of the sample) in the treated group and 692 counties
(36% of the sample) in the control group. We then conducted a series of
balance tests on the county level covariates. In Table 1 for each covariate we
report means, the absolute standardized difference in means (the absolute
value of the difference in means divided by the standard deviation before
matching), and the p-value from the Kolmogorov-Smirov (KS) test.

We find that rainfall patterns in 2000 were not as-if random. For the 2000
election cycle, counties with excess rainfall were less likely to be Hispanic and
African American and had lower levels of income and education. A general
rule of thumb is that matched standardized differences should be less than
0.20 and preferably 0.10 (Rosenbaum 2010). With one exception, all the
standard differences exceed 0.10, with several being above 0.30. Moreover,
even when the centers of the distributions appear to be similar, as is true for
the percentage of residents that are below the poverty line, the KS test indi-
cates that other moments of the distribution differ as every KS test p-value
is less than 0.01. In summary, the balance test results clearly demonstrate
that the haphazard nature of excess rainfall does not produce the same level
of balance that would be produced by randomization. Coupled with the fact
that rainfall is a relatively weak instrument for turnout—the correlation be-
tween rainfall and turnout is 0.08 in 2000—it would be dangerous to make
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Table 1
Balance statistics for unmatched US covariates

Mean Mean Std. KS
treated control diff. p-vala

Rainfall deviation 0.34 −0.07 1.38 0.00

Population (log) 9.99 10.56 0.38 0.00
Percent black 0.02 0.03 0.18 0.00
Percent Hispanic 0.03 0.07 0.42 0.00
High school educ. 0.80 0.82 0.24 0.00
College educ. 0.16 0.20 0.59 0.00
Median HH income (log) 10.45 10.52 0.30 0.00
Poverty rate 0.13 0.13 0.00 0.00

a Kolmogorov-Smirnov p-values calculated by with b = 5000
bootstrap replications.

inferences based on the excess rainfall instrument without further statistical
adjustments.

3.2. How the matching was done. In the matching, we calculated the
pairwise distances between the counties included in the sample. We used a
rank-based Mahalanobis distance metric, which is robust to highly skewed
variables (Rosenbaum 2010). We also applied a large penalty for geographic
contiguity so that the algorithm avoids matching contiguous counties, if
possible, subject to minimizing imbalances on the covariates. The logic be-
hind this adjacency constraint is as follows. Take units A and B which are
adjacent. Unit A records 1 inch of rain above average. Unit B records .25
inches of rain above average. However, the weather station in B is far from
the border with A and with additional weather stations we would record .5
inches of rain in unit B. If we pair units A and B, we over-estimate the dis-
couragement from rainfall by recording zij − zik = .75 instead of the actual
discrepancy of zij − zik = .5. Take unit C which is non-adjacent to A. For
units A and C, we record zij − zik = .75, this discrepancy is much less likely
be a function of measurement error due to adjacency.

We would also expect that rainfall patterns are spatially correlated. In our
context, such spatial correlation could result in a violation of the no inter-
ference component of the stable unit treatment value assumption (SUTVA)
(Rubin 1986). SUTVA is assumed under the potential outcomes approach
to causal inference, and is assumed in the IV framework of Angrist, Imbens
and Rubin (1996). A spatially correlated instrument may not induce a a
violation of SUTVA, but a spatially correlated instrument would require
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adjusting our estimates of uncertainty. How might a spatially correlated in-
strument violate SUTVA? Interference could occur if rainfall recorded in one
county decreases turnout in a nearby county, but the nearby county records
a small amount of excess rainfall. Our approach to matching counties that
are not adjacent is also an attempt to bolster the plausibility of SUTVA. To
that end, we characterize interference as partial interference (Sobel 2006)
where observations in one group may interfere with one another but obser-
vations in distant places do not. Thus by not matching adjacent counties
we hope to reduce the likelihood that rainfall recorded on election day in
one location is less likely to travel to a location farther away. See Zigler,
Dominici and Wang (2012) for another example where spatial correlation is
characterized as a possible SUTVA violation.2

As we proposed above, we perform a grid search over combinations of Λ
and e. In this case, we used a grid search for values of Λ from 0 to 1.10
and sinks between 0 and 1435. We selected the maximum value for Λ as the
value equal to four times the standard deviation on the unmatched pairwise
differences in excess rainfall. We set the maximum number of sinks to 1435,
which means dropping nearly 80% of the sample. Overall, this implies 41
different values for Λ and 36 values for the sinks, producing 1476 different
match specifications.

We deemed 1476 different matches a sufficient number of matches to ex-
plore the matching space, though this decision was based on informal reason-
ing rather than any formal calculations. For each specification, optimal non-
bipartite matching was performed and balance statistics on the covariates
were recorded. We also recorded the strength of the instrument as recorded
by the standardized difference on the excess rainfall measure within matched
county pairs and the results from a weak instrument test.

3.3. Mapping the matching space and an initial match. We summarize
the results of all these matches using a set of figures that summarize the
matching space. Figure 1 contains two plots that summarize the matches for
combinations of sinks and values of Λ. In Figure 1a, we summarize balance
by plotting the mean p-value from the KS-test for each possible match. The
match at the origin in the plot (bottom left corner) is the match with no sinks
and Λ set to zero. This represents a standard matching that uses the entire
population of counties and places no penalties on the within-pair difference
in excess rainfall, and therefore does not strengthen the instrument. In the
plot, we observe that as we strengthen the instrument by increasing the

2However, we also found that allowing contiguous counties to be matched did not alter
our inferences.
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Fig 1: In panel (1a) we record the mean KS test p-value for each match given
a combination of sinks and a value for Λ the penalty for strengthening the
instrument. In panel (1b), we record the absolute standardized difference
within matched counties on the excess rainfall measure. Each square in the
plots represents either an average p-value or the standardized difference on
excess rainfall for each of the 1476 matches.

value of Λ we tend to make balance worse. However, if we drop observations
by adding sinks, we can increase the strength of the instrument and preserve
balance.

In Figure 1b, we summarize the match by plotting the absolute standard-
ized difference within matched pairs on the measure of excess rainfall, a
measure of instrument strength. Clearly increasing the value of Λ increases
the strength of the instrument as measured by the standardized difference.
As we might expect, instrument strength is somewhat invariant to the num-
ber of sinks. That is, if we do little to strengthen the instrument adding sinks
does little to further strengthen the instrument. However, the instrument is
strongest when we set a large penalty on Λ and use many sinks.

Examination of both plots begs the question of which match we might
prefer. There appear to be a number of acceptable matches in terms of
those where the instrument is stronger due to the penalties, while balance
remains acceptable. For example, take one match where Λ = 0.55, which is
equal to two standard deviations on the pairwise differences in rainfall with
675 sinks, which drops approximately one third of the observations. This
match is comprised of 625 matched county pairs instead of the full set of
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Table 2
Balance statistics for US county matches

Medium IVa

I = 625 matched pairs

Mean Mean Std. KS
treated control diff. p-valb

Rainfall deviation 0.35 0.06 0.96 0.00

Population (log) 10.04 10.07 0.02 0.70
Percent African-American 0.02 0.02 0.01 0.58
Percent Hispanic 0.05 0.04 0.01 0.68
High school educ. 0.81 0.81 0.03 0.83
College educ. 0.17 0.17 0.00 0.99
Median Household income (log) 10.46 10.46 0.02 0.78
Poverty rate 0.13 0.13 0.04 0.64

a Match performed with ε = 0.55 and 675 sinks.
b Kolmogorov-Smirnov p-values calculated from 5000 bootstrapped

samples.

962 matched county pairs available if we don’t use any sinks. For this match,
the standardized difference on the rainfall measure increases from 0.82 to
nearly 1.0. For this number of sinks, we found that stronger instruments
produced levels of balance we thought acceptable. Table 2 contains the bal-
ance statistics for this match. For this match, all standardized differences
are less than 0.10, and the smallest p-value from the KS test is 0.58. As
such, this would appear to be a successful match, in that we have increased
the strength the instrument, maintained balance, and not discarded a high
number of observations.

Next, we examine the results from a weak instrument test for this match.
For this match, the R2 is 0.00458 and the value from the F-test is well
below the standard threshold of 10. It is worth noting that in simulation
evidence, 2SLS confidence intervals had poor coverage properties when the
first stage R2 fell below 0.05 (?). This also highlights a difficulty with select-
ing an acceptable match. An increase in the standardized difference on the
instrument may not translate into sufficiently strong instrument. We next
use weak instrument tests to guide the selection of a final match.

3.4. Selection of a match with weak instrument tests. For the 1476 total
matches we performed, we also recorded information from weak instrument
tests. In the panels of Figure 2 we plot quantities from the weak instrument
tests for each match. In Figure 2a, we plot the R2 and Figure 2b contains
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(b) F-statistic for each match.

Fig 2: In panel (2a) we record the R2 for each match given a combination
of sinks and a value for Λ the penalty for strengthening the instrument. In
Figure 2b, we record the F-statistic from a regression of turnout on excess
rainfall using the matched data. The dark line in both panels demarcates
matches where the F-statistic is greater than 10. Matches to the left of the
line pass the weak instrument test.

the F-test statistic for each match. Each panel also contains a contour line
that demarcates the region where the matching produces an F-test statistic
larger than 10. We can clearly see that a minority of the matches produce
results that pass the weak instrument test. In fact, we observe that for a
value of Λ above 0.20 we rarely pass the weak instrument test unless we use
very few sinks, and the strongest match uses a large number of sinks but
cannot strengthen the match much above a value of 0.20 for Λ.

We selected as a final match, the match the produced the largest F-
statistic and R2 value in Figure 2. In Table 3 we present balance statistic
results for this match as well as the match utilizes the full sample and
does not strengthen the instrument. In general, there is relatively small
amount that we can strengthen the instrument in this example in terms
of the standardized difference. For other covariates, both matches produce
acceptable levels of balance as all the standardized differences are less than
0.10 and the smallest KS test p-value is 0.40.

This example illustrates the value of our approach. Without the results
from the F -test, we suspect most analysts would have selected a match much
like the one we reported in Table 2. In that match, we produced a higher



16 KEELE AND MORGAN

Table 3
Balance statistics for two matches. The standard IV match uses the full sample
and does not strengthen the instrument. The Strong IV match is based on the

match that produces the largest F-statistic from the weak instrument test.

(I) Standard IVa Match
I = 962 matched pairs

Mean Mean Std. Med. KS

treated control diff. QQ p-valb

Rainfall deviation 0.32 0.07 0.82 0.27 0.00

Population (log) 10.18 10.22 0.03 0.01 0.40
Percent African-American 0.02 0.02 0.00 0.01 0.97
Percent Hispanic 0.05 0.05 0.03 0.01 0.76
High school educ. 0.81 0.81 0.01 0.01 1.00
College educ. 0.17 0.17 0.04 0.01 0.83
Median Household income (log) 10.48 10.48 0.01 0.01 0.86
Poverty rate 0.13 0.13 0.02 0.01 0.76

(II) Strong IVa Match
I = 429 matched pairs

Mean Mean Std. Med. KS

treated control diff. QQ p-valb

Rainfall deviation 0.29 0.04 0.84 0.28 0.00

Population (log) 10.50 10.55 0.03 0.01 0.77
Percent African-American 0.03 0.03 0.00 0.01 0.99
Percent Hispanic 0.04 0.04 0.05 0.01 0.95
High school educ. 0.81 0.81 0.00 0.01 1.00
College educ. 0.18 0.18 0.06 0.01 0.88
Median Household income (log) 10.49 10.49 0.01 0.01 0.68
Poverty rate 0.13 0.13 0.02 0.01 0.88

a Match (I) performed without reverse caliper or sinks; (II) performed with
ε = 0.1375 and 1066 sinks.

b Kolmogorov-Smirnov p-values calculated from 5000 bootstrapped samples.
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standardized difference on the instrument, but the match failed the weak
instrument test, as did most of the matches we produced. Our example also
demonstrates that while instruments can be strengthened through matching,
there may be limits to amount of strengthening that can occur.

In our application to find a match where the instrument has been suffi-
ciently strengthened, we had to focus on a much smaller set of counties. In
the standard match, there are 962 matched pairs, so 962 counties have been
encouraged to have lower turnout by rainfall. However, in the strong IV
match only 429 counties are encouraged to have lower turnout. As such, we
have altered the estimand through matching since we deem a much smaller
fraction of the study population to be compliers. However, we can explore
whether the larger set of compliers differs from the set of compliers in the
strong IV match in terms of observed characteristics. Table 4 contains mean
differences between the counties that are compliers in the standard match
but not included in the strong IV match and those counties that are treated
as compliers in the strong IV match. In terms of observable characteristics,
these two sets of counties are quite similar. This implies that there are sim-
ply not enough counties with low amounts of excess rainfall available for
matching to allow for a large difference in rainfall in all the matched pairs.

Table 4
Comparison of compliers between standard IV match and strong IV match. This

comparison is between the set of counties with higher rainfall in the strong IV match,
and the non-overlapping set of counties with higher rainfall in the standard match.

Standard IV Match Strong IV Match
Mean Mean

Rainfall deviation 0.31 0.29

Population (log) 10.00 10.50
Percent African-American 0.02 0.03
Percent Hispanic 0.05 0.04
High school educ. 0.81 0.81
College educ. 0.17 0.18
Median Household income (log) 10.46 10.49
Poverty rate 0.13 0.13

4. Inference, estimates, and sensitivity analysis.

4.1. Randomization Inference for an Instrument. Next, we outline IV
testing and estimation via randomization inference. Following Rosenbaum
(1999), we assume that the effect of encouragement on response is propor-
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tional to its effect on the treatment dose received,

(3) rT ij − rCij = β(dT ij − dCij).

If this model is true then observed response is related to observed dose
through the following equation

Rij − βDij = rT ij − βdT ij = rCij − βdCij .

Under this model of effects, the response will take the same value regardless
of the value of Zij , which makes this model of effects consistent with the
exclusion restriction. Informally, the exclusion restriction implies that in-
strument assignment Zij is related to the observed response Rij = ZijrT ij +
(1 − Zij)rCij only through the realized dose of the treatment Dij . That is
true here since Rij − βDij is a constant that does not vary with Zij . In this
model of effects, the treatment effect varies from unit to unit based on the
level of Di as measured by (dT ij − dCij). If the unit received no dose, then
rT ij − rCij = β(dT ij − dCij) = 0. In the application, a full dose occurs when
Dij = 100. For units that take the full dose, the effect is β × 100, while a
unit with half a dose would have an effect β × 50.

Given this model of effects, we wish to test whether the treatment is
without effect, estimate a point estimate, and form a confidence interval.
Under randomization inference, we can calculate these quantities by testing
various hypotheses about β using the following set of null hypotheses H0 :
β = β0. We obtain inferences about β using the observed quantity Rij −
β0Dij = Uij as a set of adjusted responses.

To test the sharp null hypothesis, we test H0 : β = β0, with β0 = 0 by
ranking |Uij | from 1 to I. We calculate Wilcoxon’s signed rank statistic, U ,
as the sum of the ranks for which Uij > 0. If ties occur, average ranks are
used as if the ranks had differed by a small amount. Under H0 : β = β0,
if xi1 = xi2 for each i, and there are no unobserved confounders related
to the probability of treatment, then the probability of assignment to the
instrument is 1/2 independently within each pair. If this is true, we can
compare U to the randomization distribution for Wilcoxon’s signed rank
statistic, and this provides the exact p-value for a test of the sharp null
hypothesis that β0 = 0.

A point estimate for β is obtained using the method of Hodges and
Lehmann (1963). The Hodges-Lehmann estimate of β is the value of β0
such that Wilcoxon’s signed rank statistic is as close as possible to its null
expectation, I(I + 1)/4. Intuitively, the point estimate β̂ is the value of β0
such that U equals I(I+1)/4 when U is computed from Rij−β0Dij . A 95%
confidence interval for the treatment effect is formed by testing a series of
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Table 5
Treatment effect and sensitivity analysis for US counties

Standard IV Match Strong IV Match

β 95% CI β 95% CI

0.40 0.20 0.58 0.45 0.21 0.73

hypotheses H0 : β = β0 and retaining the set of values of β0 not rejected
at the 5% level. This is equivalent to inverting the test for β (Rosenbaum
2002a).

4.2. Application to the 2000 US election. Table 5 contains the point esti-
mates and 95% confidence intervals for two of the matches. The first match
did not strengthen the instrument and the second match is the based on
the stronger instrument that maximized the weak instrument test. For the
match where we did not strengthen the instrument, the point estimate is
0.40, which implies that an increase in turnout of one percentage point
increases Democratic vote share by four-tenths of a percent. The point es-
timate is statistically significant as the 95% confidence interval is bounded
away from zero. This estimate is also nearly identical to the estimates in
the original analysis based on many years of data (Gomez, Hansford and
Krause 2007). For the matches which resulted in a stronger instrument, we
find that the point estimate is slightly larger in magnitude, at 0.45, while
the confidence intervals are also wider, which is expected given the much
smaller sample size.

One might reasonably consider whether the estimates in Table 5 are sim-
ilar to estimates from two-stage least squares applied to all counties, with
excess rainfall as an instrument for turnout. Here, we applied two-stage
least squares to the unmatched data. We find that two-stage least squares
produces a point estimate of 1.86 and a 95% CI [0.57, 3.07] if we do not
include covariates, and a point estimate of 3.13 and a 95% CI [2.03, 4.24]
with covariates included. Thus two-stage least squares yields much larger es-
timates. This is not entirely surprising. The two-stage least square estimate
is equivalent to

β̂tsls =

∑I
i=1(2Zi1 − 1)(Ri1 −Ri2)∑I
i=1(2Zi1 − 1)(Di1 −Di2)

,

which is the well-known Wald (1940) estimator. When the instrument is
weak and provides little encouragement, the denominator may be very small,
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resulting in inflated estimates. The estimates in Table 5 assume that assign-
ment to an above average amount of rain on election day within matched
pairs is effectively random. We next ask whether these estimates are sensi-
tive to bias from a hidden confounder that alters the probability of being
assigned to above average rainfall within matched pairs.

4.3. Sensitivity analysis for generic hidden bias. In the preceding analy-
sis, we assumed that assignment to encouragement (the instrument) within
pairs is as-if random conditional on observed covariates after matching. We
first formalize this assumption. Let πj denote the probability of begin as-
signed to a value of the instrument for unit j. For two subjects, k and j
matched so that observed covariates are similar, xik = xij , we assume that
πj = πk. However, subjects may differ in the probability of treatment be-
cause they differ in terms of some unobserved covariate. That is, it may be
the case that we failed to match on an important unobserved binary covari-
ate u such that xik = xik, but possibly uik 6= uij . If true, the probability of
being exposed to treatment may not be constant within matched pairs.

Rosenbaum (2002a, sec. 4.2) proves that we may characterize this prob-
ability with a logit model linking the probability of assignment to observed
covariates xj and an unobserved binary covariate uj : log{πj/(1 − πj)} =
φ(xj) + γuj where φ(·) is an unknown function. Using this model, we can
express how two matched units might differ in terms of their probability of
assignment as a function of uj . For two units, ik and ij with xik = xij , we
characterize how they may differ in their odds of assignment with the model
above rewritten as: πij(1− πik)/πik(1− πij) = exp{γ(uij − uik)} .

Now we write exp(γ) = Γ, and if Γ = 1 for two matched units, then the
units do not differ in their odds of assignment as a function of the unob-
served u. For Γ values greater than one, we can place bounds on quantities
of interest such as a p-values or point estimates. We can vary the values of
Γ systematically as a sensitivity parameter to probe whether the IV esti-
mate is sensitive to departures from random assignment of the instrument
(Rosenbaum 2002a). Larger values of Γ indicate greater resistance to bias
from hidden confounders. For a discussion of different approaches to sensi-
tivity analysis in observational studies see Cornfield et al. (1959), Brumback
et al. (2004), Lin, Psaty and Kronmal (1998), Liu, Kuramoto and Stuart
(2013), McCandless, Gustafson and Levy (2007), Robins, Rotnitzky and
Scharfstein (1999), Rosenbaum (2007), Rosenbaum (2002a), Small (2007),
and Small and Rosenbaum (2008)

Baiocchi et al. (2010) find that strengthening the instrument yields an
estimate that is more resistant to hidden bias, which is consistent with what
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statistical theory predicts (Small and Rosenbaum 2008). We also focus on
whether the design with the smaller sample size but stronger instrument is
more resistant to bias from an unobserved confounder than the design with
the weaker instrument.

Above we tested H0 : β = 0 using Wilcoxon’s signed rank statistic, U .
The sign rank statistic is the sum of S independent random variables where
the sth variable equals the sign ±1 with probability 1/2. Now define U+ to
be the sums of S independent random variables where the sth variable takes
the sign ±1 with probability p+ and U− to be the sums of S independent
random variables where the sth variable takes the sign ±1 with probability
p−. Where we define p+ = Γ/1+Γ and p− = 1/1+Γ. Using these values, we
can construct values of U+ and U− which form the upper and lower bounds
on U for a given value of Γ (Rosenbaum 2002a, sec. 4.3.3). Using U+ and
U−, we can calculate a set of bounding p-values.

We apply the sensitivity analysis to both the match where no penalties
were applied to the instrument and the match where we selected the in-
strument strength via weak instrument tests. For the weak instrument, we
find that the p-value exceeds the conventional 0.05 significance level when
Γ = 1.18. For the stronger instrument, we find that the p-value exceeds
the conventional 0.05 significance level when Γ = 1.24. Therefore, despite
the much smaller sample size, we increase resistance to hidden bias in the
strong instrument match, which is consistent with statistical theory (Small
and Rosenbaum 2008). However, for both matches, a fairly modest amount
of hidden bias could explain the results we observe. As such, our conclusions
are sensitive to a possible hidden confounder.

5. Discussion. Instruments in natural experiments can often be char-
acterized as weak, in that the instrument provides little encouragement to
take the treatment. Baiocchi et al. (2010) developed a matching algorithm
produces a set of matched pairs for which the instrument is stronger. Thus
analysts need not accept the use of a weak instrument. In applications,
however, it can be difficult to know whether the match has produced a suffi-
ciently strong instrument. Using weak instrument tests from the econometric
literature, one can map the region of matches where the average within pair
distance on the instrument passes a weak instrument test. In our application,
we simply chose the combination of penalties and sinks that produced the
strongest instrument. We find that rainfall does appear to dissuade voters
on election day and this loss of voters tends to help Republican candidates,
however, this effect could be easily explained by confounding from an unob-
served covariate. While inferences changed little when we strengthened the
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instrument, conclusions were less sensitive to hidden bias.
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