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1 Introduction

Political scientists have long used statistical techniques to infer causal relationships. Many

advocate the use of experiments as the primary means of drawing causal inferences with

statistics (Green and Gerber 2002). Given that experiments are often unfeasible, others

advocate relying on natural experiments or quasi-experiments as much as possible (Sekhon

2009). While natural experiments are considered by many to be the best alternative to

randomized experimentation, they are not without complications. This stems from the fact

that, in a natural experiment, assignment to treatment occurs in some haphazard manner.

While such haphazard treatment assignment is typically preferable to contexts where units

entirely self-select into their treatment status, it is a far cry from experiments where ran-

domization is a known fact. As such, natural experiments generally entail complications that

are absent when randomization is known to hold (Sekhon and Titiunik 2012).

While natural experiments come in a myriad of forms, one popular type is based on ge-

ographic variation of the treatments of interest, where units in a treated area are compared

to units in a control area. In this kind of natural experiments, certain features of geog-

raphy allow researchers to plausibly claim that treatment assignment is haphazard or as-if

random. Natural experiments based on geography have been used to draw causal inferences

about nation building, governance and ethnic relations in Africa (Asiwaju 1985; Berger 2009;

Laitin 1986; Miguel 2004; Miles 1994; Miles and Rochefort 1991; Posner 2004), media effects

in Europe and the U.S. (Krasno and Green 2008; Huber and Arceneaux 2007; Kern and

Hainmueller 2008), local policies in U.S. cities (Gerber, Kessler, and Meredith 2011), and

polarization in the American electorate (Nall 2012).

Using the potential outcomes framework, we examine how geographic natural experi-

ments can be used as valid identification strategies and present different assumptions under

which they can lead to valid causal inferences. We make a distinction between geographic

natural experiments that are based on adjacent areas and those that are not, and argue that
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the most convincing geographic natural experiments are often those that analyze adjacent

areas and focus the analysis in a small area around the border that separates them. In this

class of geographic natural experiments, we further distinguish between a Local Geographic

Ignorability Design, where units within a narrow band around the border are assumed to

be good counterfactuals for each other, and a Geographic Regression Discontinuity Design –

which we develop in detail in Keele and Titiunik (2014)–, where the comparability of treated

and control units need not occur in any band around the border and instead occurs exactly at

the boundary points. We also discuss the complications that arise when multiple geographic

borders overlap leading to several treatments occurring simultaneously.

We demonstrate how a clear understanding of the necessary identification assumptions

can inform empirical analysis through two case studies on the effect of ballot initiatives on

voter turnout. Specifically, we study Garfield Heights, OH, and Milwaukee, WI, where an

initiative was on the city ballot but not on the ballot in neighboring municipalities. In

Garfield Heights, we find evidence that ballot initiatives increase turnout, while our analysis

of the Milwaukee initiative suggests null results. Our empirical analysis illustrates general

issues about the use of geographic variation to make causal inferences and demonstrates how

a clear understanding of the necessary assumptions can guide the statistical analysis.

The remainder of the article is organized as follows. Section 2 discusses different iden-

tification strategies based on geography and outlines the plausibility of each one. Section 3

discusses the details of our empirical application, Section 4 describes our data, and Section 5

outlines the need for specialized geography-based analysis. Section 6 presents our empirical

results, and Section 7 concludes.

2 Geographic Identification of Causal Effects

In natural experiments based on geography, units in a treated area are compared to units in a

control area, which we denote by At and Ac, respectively. We adopt the potential outcomes

framework, and assume that unit or individual i has two potential outcomes, Yi1 and Yi0,
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which correspond to levels of treatment Ti = 1 and Ti = 0, respectively.1 In this context,

Ti = 1 denotes that unit i is within At and Ti = 0 denotes that i is within Ac. Our setup

defines the unit of observation as individuals within geographic areas, which implies that

the underlying manipulation we are considering is one where individuals, not geographic

areas, are assigned to the treatment or control condition. We are interested in the effect

of treatment for unit i, τi = Yi1 − Yi0. The observed outcome is Yi = TiYi1 + (1 − Ti)Yi0,

and the fundamental problem of causal inference is that we cannot observe both Yi1 and

Yi0 simultaneously for any given unit, which implies that we are unable to estimate the

individual effect τi. However, under certain assumptions, we will be able to learn about, for

example, average effects.

One assumption that analysts might invoke is what we call geographic treatment ignor-

ability:

Assumption 1 (Geographic Treatment Ignorability). For any unit, the potential outcomes

are independent of treatment assignment. That is, Yi1, Yi0 ⊥⊥ Ti.

Under Assumption 1, assignment to treated and control areas is as-if randomly assigned:

this is the assumption that would be true if units had been assigned at random to Ac or At.

This assumption is unlikely to hold in practice, as in most applications of geographic natural

experiments the process by which some individuals come to be in treated versus control areas

is more haphazard than random. A more plausible assumption is that assignment to treated

and control areas is as-if random, but only after we control for (or “condition on”) a set of

observable covariates:

Assumption 2 (Conditional Geographic Treatment Ignorability). For any unit, the poten-

tial outcomes are independent of treatment assignment once we condition on pretreatment

covariates X.2 That is, Yi1, Yi0 ⊥⊥ Ti | Xi.

1We assume that the potential outcomes of one unit do not depend on the treatment of other units,
commonly known as SUTVA, the Stable Unit Treatment Value Assumption (Cox 1958; Rubin 1986).

2Here, we are assume that X does not include a measure of the distance to the boundary between Ac

and At.
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Under either Assumption 1 or 2, recovering the treatment effect of interest from observed

data would be simple. Unfortunately, in most social science applications of geographic

treatments, we have no a priori reason to argue that geography justifies either assumption.

For example, trying to “prove” that Assumption 1 holds, an analyst might show that several

observed covariates are balanced across Ac and At, an implication of this assumption, but

Assumption 1 also implies that unobservable variables that may affect the outcome of interest

are unrelated to the treatment, which, absent an explicit manipulation of treatment, will be

much harder to argue. Importantly, both assumptions imply that there is no leverage to be

gained by using spatial information about the location of the boundary between Ac and At.

In fact, these areas need not even be adjacent.

We argue that, generally, geographic natural experiments based on Assumptions 1 or 2

will be unconvincing. A much more promising alternative is to consider designs where treated

and control areas are adjacent. When this occurs, researchers can invoke identification

assumptions based on this adjacency, all of which presuppose that the way in which these

areas were separated (or the way in which units sorted into these areas) was arbitrary or

haphazard and leads to the expectation that comparisons between treatment and control

areas are more plausible for units located near the boundary that separates them.

2.1 Geographic Natural Experiments Based on Borders

When the process by which the boundary between adjacent areas is haphazard, researchers

can weaken Assumptions 1 or 2 above by assuming instead that ignorability only holds in

a small area around the boundary. Exploiting a border between adjacent areas, however,

often introduces the complication of compound treatments. This phenomenon occurs when

more than one border is located at the same place, and multiple treatments affect the areas

of interest simultaneously. When the boundary of interest is simultaneously the boundary of

multiple institutional, administrative or political units, we need an assumption that allows

us to isolate the treatment of interest from all other treatments that occur simultaneously.
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In the literature, this assumption is called the Compound Treatment Irrelevance assumption

(Keele and Titiunik 2014).

To state this assumption formally, we assume there are K binary treatments that occur

simultaneously, denoted Tij, j = 1, 2, . . . , K, for each individual i, and Tij = {0, 1}. In

general, potential outcomes can be functions of each of these simultaneously occurring treat-

ments, but we assume that only the kth treatment, Tik, is of interest. We make our previous

potential outcome notation more general and let YiTi
be the potential outcome of individual

i with Ti = (Ti1, Ti2, . . . , Tik . . . , TiK)′ a K-dimensional vector. This notation explicitly al-

lows all K treatments to affect potential outcomes. When the boundary of interest induces

multiple simultaneous treatments, we must explicitly assume that the treatment of interest

is the only treatment that affects potential outcomes:

Assumption 3 (Compound Treatment Irrelevance). Assume the treatment of interest is

the kth treatment. For each i and for all possible pairs of treatment vectors Ti and T′
i,

YiTi
= YiT′

i
if Tik = T ′

ik.

When Assumption 3 holds, we can write YiTi
= YiTik

and denote potential outcomes

simply as Yi1 and Yi0. In one of the applications that we study below, the border of interest

–a municipal border– coincides with school district boundaries. In that application, there

are at least two treatments that may affect potential outcomes, the treatment induced by

the municipal border, which we denote Ti1, and the treatment induced by the school district

border, which we denote Ti2. In this case, invoking Assumption 3 with Ti1 as the treatment of

interest leads to Yi(Ti1,Ti2)′ = YiTi1
, which means that potential outcomes depend only on the

treatment induced by the municipal border. In the other application we study, however, we

are able to isolate the boundary of interest and avoid this assumption. In general, analysts

will have to either justify this assumption or search for locations where it can be avoided.3

3When multiple treatments overlap at the boundary, one could calculate the effect of the treatment that
is not of interest holding the treatment of interest constant; if the recovered effects were zero for all levels
of the treatment of interest, then Assumption 3 might be plausible. For example, imagine that a city limit
induces the presence or absence of a ballot initiative and that the treatment of interest is the presence of
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If compound treatment irrelevance is assumed (or better yet, holds by construction),

inferences in the context of geographic natural experiments based on adjacent areas can be

based on different assumptions. The first assumption we consider is that, close to the border,

treated and control units are valid counterfactuals for each other:

Assumption 4 (Local Geographic Treatment Ignorability). When Ac and At are adjacent,

the potential outcomes are independent of treatment assignment only for units that are close

to the boundary that separates Ac from At . That is, Yi1, Yi0 ⊥⊥ Ti | di < D, where D is a

scalar, D > 0, and di is unit’s i perpendicular distance to the boundary (i.e., the shortest

distance to the boundary from i’s location).

Note that Assumption 4 requires information about each unit’s location. This information

need not be as detailed as each individual’s geographic coordinate position, but it does require

that researchers know at least whether or not each unit falls in the small area around the

boundary. Invoking assumptions of this sort, either formally or informally, is common in

applications of geographic natural experiments. For example, in his study of the political

salience of cultural cleavages, Posner (2004) selected pairs of Chewa and Tumbuka villages

on either side of the Zambia-Malawi border that were “very close together, on the logic that

this would provide a natural control for geographic and ecological factors that might affect

villagers’ welfare or modes of agricultural production and, thus, potentially their attitudes

toward outgroup members [the outcome of interest]” Posner (2004, p. 531). Similarly, Lavy

(2010, p. 1165) studied the effect of free school choice on students’ outcomes using a sample

of students in a narrow band around the municipal border that separates treated and control

areas and claimed that “limiting the sample to observations within such a narrow bandwidth

yields a sample that is balanced in the constant observable and unobservable characteristics

of treatment and control units.”

the initiative on the ballot. If school districts overlap imperfectly with the city limit, one could look at
the effect of different school districts (i.e., districts with high versus low quality schools) on the outcome of
interest in areas with and without the ballot initiative separately. If this school district effect were found to
be zero in both areas, this could be used as indirect evidence in favor of the compound treatment irrelevance
assumption. We thank an anonymous reviewer for this observation.
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Under Assumption 4, restricting the analysis to narrow bands or buffers around the

border will yield valid treatment effect estimates. But how would a researcher know if this

assumption is plausible and how small the buffer should be? Like Assumption 1 (and unlike

Assumption 2), Assumption 4 has the observable implication that covariates determined

before treatment is assigned (often called “predetermined” or “pretreatment” covariates)

should have similar distributions in treated and control areas in a narrow band around

the border. Thus, to gauge the plausibility of this assumption, researchers can examine

whether imbalance in pretreatment covariates is reduced as narrower and narrower buffers

are considered. If reducing the buffers increases comparability in observables, researchers can

make a case about the plausibility of Assumption 4, and perform the analysis in the band (or

bands) where predetermined covariates are indistinguishable in both areas. In general, we

argue that balance in pretreatment covariates as a function of spatial proximity to the border

(where proximity is defined by buffers around the border or by two-dimensional measures of

distance, as we consider below), provides a useful criterion for evaluating the plausibility of

geographic natural experiments. In what follows, we refer to geographic natural experiments

based on Assumption 4 as Local Geographic Ignorability (LGI) designs.

In some applications, a local geographic ignorability assumption may not be plausible.

When this happens, researchers can consider an alternative assumption based on continuity

rather than ignorability, and exploit the discontinuity in treatment assignment that occurs at

the geographic boundary together with an assumption about the continuity of the potential

outcomes at the boundary. We provide a brief overview of this design here, but refer the

reader to Keele and Titiunik (2014) for a full discussion of this design, which we call the Geo-

graphic Regression Discontinuity (GRD) design. In a standard RD design, the probability of

receiving treatment changes discontinuously as a function of a “forcing variable” or “score”,

while potential outcomes vary only smoothly.4 A GRD design requires generalizing the stan-

4See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for comprehensive reviews of RD designs.
See also Papay, Willett, and Murnane (2011) and Imbens and Zajonc (2011), who have recently generalized
the RD design to include multiple forcing variables.
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dard RD design to include a two-dimensional score, where the two dimensions are geographic

coordinates that uniquely represent each unit’s geographic location. Similarly to a design

based on Assumption 4, this design presupposes that Ac and At are adjacent, and exploits

units’ spatial proximity to the border that separates these areas, together with the fact that

treatment assignment jumps discontinuously along this boundary. The geographic location

of individual i is given by two coordinates such as latitude and longitude, (Si1, Si2) = Si. We

use st ∈ At to refer to locations in the treatment area and sc ∈ Ac to refer to locations in the

control area. We compute each observation i’s distance to any point on the border, and use

vectors, in bold, to simplify the notation. We call the set that collects all boundary points

B, and when convenient we denote a single boundary point b = (S1, S2) ∈ B. Assignment

of Ti is now a deterministic function of the score Si, which has a discontinuity at the known

boundary B.

As discussed in Keele and Titiunik (2014), the following continuity assumption (together

with some additional conditions), leads to identification of the average treatment effect at

each boundary point:

Assumption 5 (Continuity in two-dimensional score). The conditional regression functions

E(Yi0|Si) and E(Yi1|Si) are continuous in Si at all points b on the boundary.

Note that in a GRD design, the probability of treatment jumps discontinuously along an

infinite collection of points – the collection of all points b ∈ B. In other words, since in a

GRD design the cutoff is a boundary, under appropriate assumptions the GRD design will

identify the treatment effect at each of the boundary points. Note also that identification

under Assumption 5 requires knowing the spatial location of each unit and the boundary

in a coordinate system such as latitude and longitude. When this information is not avail-

able, Assumption 4 might be unavoidable, and data quality will have a direct effect on the

identifying assumption that may be invoked.

A simpler implementation of the GRD design uses the perpendicular distance to the

boundary as the score instead of the two-dimensional measure of distance required by As-
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sumption 5. As discussed in Keele and Titiunik (2014), this geographically “naive” measure

of distance ignores the spatial nature of geographic locations, since the shortest distance

from an individual’s location to the boundary does not determine the exact location of this

individual on a map. In other words, this naive distance does not account for distance

along the border. An implementation of the RD design based on such naive distance mea-

sure would estimate an average effect, but this effect might mask considerable heterogeneity

across boundary points. For example, establishing the plausibility of a GRD design estimat-

ing average effects on predetermined covariates using a naive approach might mask points

on the boundary where these covariates are discontinuous. Moreover, implementation of a

geographic RD design based on a naive distance measure undermines the typical justifica-

tion for the design – that units on either side of a border but very near each other are good

counterfactuals for one another. A naive implementation based on nearest distance typically

treats all units in the control area as equally valid counterfactuals for every treated unit,

even if these control units are very far apart from each other. This will be most problematic

when the boundary of interest is long since, as the boundary becomes longer, the distance

between any control-treated pair can be made arbitrarily large by simply moving one of

the units along the boundary while leaving the other’s location fixed, even if both units are

within a narrow band around the border. A naive GRD design may nonetheless be appro-

priate in some applications, particularly when the border of interest is short and defines a

homogeneous region.

Furthermore, whether a design should be based on a continuity assumption such as

Assumption 5 or a local randomization assumption such as Assumption 4 hinges on whether

the average potential outcomes vary very steeply with distance or they can be reasonably

approximated by a constant function of distance in a small neighborhood of the boundary.

See Cattaneo, Frandsen, and Titiunik (2014) for a discussion of the relationship between

RD designs based on a continuity condition and RD designs based on a local randomization

condition.
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Some authors have argued that RD designs are a generally superior form of natural

experiment (see, e.g., Lee and Lemieux 2010). One might be tempted to imbue the GRD

design with the same properties, but some caution is necessary. The score in an RD design

can be given a behavioral interpretation, according to which it is comprised both of deliberate

efforts by agents to reach the cutoff and also of a stochastic component that reflects that

these efforts are subject to random shocks outside the agents’ control (Lee 2008). When the

stochastic component is small relative to the systematic component and agents are able to

precisely “sort” around the threshold, the RD design will not yield valid estimates of the

parameter of interest. This is equally true in the GRD design. When the discontinuity is a

geographic boundary between Ac and At and the units of analysis are individuals who reside

in these areas, identification under Assumption 5 requires that people cannot precisely sort

around the boundary in a way that makes potential outcomes discontinuous. Indeed, this

concern also applies to inferences based on Assumption 4, which requires that there are no

unobservable confounders in the small area around the boundary where the local conditional

independence is invoked.

Thus, in various forms, the assumptions above require that the placement of each unit

on either side of the geographic boundary between Ac and At be as-if random or, in other

words, that units cannot precisely sort or self-select to one side of the boundary based on

unobserved factors that are also correlated with the outcomes of interest. The difficulty

is that in geographic contexts, people will often be able to carefully select their place of

residence based on the boundary of interest. For example, features such as the quality of

schools and the price of housing may vary discontinuously at the border of a city limit when

this limit overlaps with school districts. If this is true, the assumptions above might be

violated. Thus, in any geographic natural experiment based on a border, analysts must

carefully analyze preexisting differences in the populations on each side of the boundary.

The burden is on analysts to present compelling evidence that preexisting differences do not

occur. That evidence should come in the form of demonstrating that baseline characteristics
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have the same distribution on either side of the boundary, together with plausible claims

about the similarity of unobservable characteristics —for which, naturally, no test will be

available.

In some applications, observable characteristics are significantly different in a small neigh-

borhood on both sides of the cutoff, but there is reason to believe that, once these observables

are controlled for, there are no unobserved confounders inside this neighborhood. In these

cases, Assumption 4 may be replaced by its conditional-on-observables counterpart:

Assumption 4.b (Conditional Local Geographic Treatment Ignorability). When Ac and

At are adjacent, the potential outcomes are independent of treatment assignment only for

units who are close to the boundary that separates Ac from At, conditional on pretreatment

characteristics X. That is, Yi1, Yi0 ⊥⊥ Ti | Xi, di < D, where D is a scalar, D > 0, and di

is unit’s i perpendicular distance to the boundary (i.e., the shortest distance to the boundary

from i’s location).

Assumption 4.b weakens Assumption 4, and invokes independence between treatment

assignment and potential outcomes near the boundary only after predetermined covariates

have been conditioned on.

From a formal point of view, each of the assumptions stated above leads to a different

estimation strategy. Under Assumption 1, a simple difference in means between treated and

control outcomes will recover the average treatment effect. Under Assumption 2, one must

condition on predetermined covariates in the estimation; in this case, treatment effects can be

estimated by means of parametric adjustment methods such as multivariate linear regression

or by a nonparametric method such as matching. Under a LGI design (Assumption 4), esti-

mation can proceed as under Assumption 1, except that it should only include observations

within a small buffer around the border. Finally, estimation under a GRD design (Assump-

tion 5) could be done by means of local-linear estimation within a specified bandwidth that

weights observations according to their distance to the specific boundary point where the

treatment is being estimated (see Keele and Titiunik 2014 for details). Estimation based on
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the local conditional Assumption 4.b might proceed by including geographic distance along

with other covariates in a statistical model, estimating a simple regression model restricted

to units near a border, or using matching estimator as in Keele, Titiunik, and Zubizarreta

(2014). Furthermore, readers should note that the parameters that can be identified and

estimated under each assumption are generally different. While Assumptions 1 and 2 allow

for identification of global average treatment effects, Assumption 4 (and its conditional coun-

terpart 4.b) recovers local average treatment effects only for those units within the narrow

buffer around the border, and Assumption 5 allows identification of the local average effect

of treatment at each boundary point.

3 Empirical Application: Ballot Initiatives and Voter

Turnout

One feature of the political institutions in some states is the ballot initiative process. While

the method by which direct legislation is implemented varies, in 24 states citizens can place

legislative statutes directly on the ballot for passage by the electorate. While the initiative

process is often decried as populism run amok in the popular press, the consequences of ini-

tiatives are thought to be benign to favorable in much of the academic literature (Matsusaka

2004; Lupia and Matsusaka 2004; Smith and Tolbert 2004). For good or ill, few doubt that

direct legislation changes outcomes across states, particularly on the issue area in question.

It is also thought, however, that initiatives have spillover effects on outcomes unrelated to

the policy issue on the ballot. In particular, it is thought that ballot initiatives increase

voter turnout. Below, we discuss why we might expect states with initiatives to have higher

levels of voter turnout.

In a presidential or Congressional election, voters’ estimates of the benefits of voting must

be imprecise. Electoral promises from candidates are often necessarily general and possibly

ambiguous. Even if a candidate were to promise a large tax cut or a large increase in targeted

public goods, once elected the politician may renege on the promise and even presidents can
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do little without Congressional approval. Thus, electoral victory by a preferred candidate

does not ensure a specific benefit to voters. In contrast, initiatives often have precise payoffs

(a reduction in taxes or a ban on smoking) and become law in a relatively short period of

time if not immediately after the election. Therefore, initiatives are more likely to provide

immediate and precise payoffs to voters which makes the benefits of voting more salient.

Ballot initiatives, however, certainly do not guarantee increased levels of voter turnout. In

many elections, the promised benefit of any initiative may not be enough to offset the costs

of voting and the very small chance of being decisive. Or perhaps only those with sufficient

individual resources will understand the benefits. Moreover, passage of an initiative does

not guarantee it will be enacted. Many initiatives depend on cooperation from the state

legislature, and there is evidence that state politicians do not always cooperate (Gerber,

Lupia, McCubbins, and Kiewiet 2001). From a theoretical standpoint, then, it is unclear

whether we should expect differences in voter turnout across states with and without direct

legislation.

The empirical literature that has attempted to link ballot initiatives to increased turnout

is mixed. Early work found little evidence that turnout was higher when initiatives were on

the ballot (Everson 1981; Magleby 1984). Later work did find such a link (Tolbert, Grummel,

and Smith 2001), but stipulated a conditional effect (Smith 2001). This conditionality is due

to the differing content of initiatives: not every initiative promises clearly defined benefits

or is salient to voters. While Proposition 13 in California offered an obvious payoff to

a well defined constituency through lower property taxes, the benefits of many initiatives

are diffuse and not well defined. For example, Proposition 60 in California required that all

parties participating in a primary election would advance their candidate with the most votes

to the general election. Initiatives of this type often have little salience to the general public.

An initiative such as Proposition 60 may not be enough to outweigh the costs of voting in

that election for many voters. Later work has found that the number of initiatives appears

to matter, that is, that more initiatives lead to higher turnout (Tolbert and Grummel 2003;
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Tolbert, McNeal, and Smith 2003; Smith and Tolbert 2004; Tolbert and Smith 2005). Other

analysts find that turnout only rises with initiative use in midterm elections (Lacey 2005;

Daniel and Yohai 2008). The minimal consensus in the literature is that salient initiatives

in midterm elections increase turnout. However, Smith and Tolbert (2004) and Tolbert and

Smith (2005) contend that the effect of initiatives holds in presidential elections as well.

Since the initiative process, like many other political phenomena, maps directly to geo-

graphic areas, we might study its effects with a geographic natural experiment. For example,

the Cincinnati metropolitan area straddles the border between Kentucky (where initiatives

cannot be introduced on the ballot) and Ohio (where initiatives can be introduced). We

assert that state borders, here the Ohio border, do not make for a convincing design, since

we suspect that citizens carefully and precisely choose their state of residence, possibly more

precisely than, for example, their county or municipality of residence. Moreover, invoking a

geographic natural experiment would require us to separate the initiative effect from other

state level factors like electoral competitiveness which can be magnified by the Electoral Col-

lege, specific statewide elections and candidates, political culture, demographics, or variation

in state election procedures such as voter registration laws, all of which may affect turnout.

Unless we are confident that distance to the state border and/or pretreatment covariates will

control for these varied factors, any attempt to isolate cross-state turnout differences due to

ballot initiatives will be seriously compromised. Instead, we attempt to isolate the causal

effect of initiatives on turnout by studying municipal ballot initiatives, where an initiative is

on the ballot in one municipality but not in other adjacent cities. The advantage of such a

design is that state level factors such as the voting registration system and political culture

are held constant by the design. Recent work has demonstrated the importance of account-

ing for unobserved state level confounders in studies of voter turnout (Keele and Minozzi

2012).

We study two different municipal initiatives. The first is from Garfield Heights, Ohio, a

suburb of Cleveland. In 2010, there were no state level initiatives on the Ohio ballot, but
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voters in Garfield Heights faced two local initiatives. The first revoked the use of photomon-

itoring devices to detect traffic violations. The second would have abolished a new fee for

trash collection enacted by the City Council. The first initiative passed by a mere 80 votes

while the second initiative resulted in exact tie of 4,606 votes for and 4,606 votes against.

Our second example is in Milwaukee, Wisconsin, where in 2008 the National Association of

Working Women helped place an initiative on the ballot that mandated all private employers

in the city of Milwaukee provide one hour of sick leave for every 30 hours worked. This ini-

tiative appeared on the ballot within the city limits of Milwaukee, but did not appear on the

ballot in the municipalities that surround Milwaukee and are also within Milwaukee county.

The initiative passed, receiving slightly more than 68% of the vote. On the county-wide

ballot, citizens also voted on a sales tax increase which passed as well.5 The initiative was

easy to understand and highly salient; we found 64 different mentions of this initiative in

the local news papers from July up until election day. Importantly, in both of our examples,

the municipalities are within the same county. Since election administration is conducted

at the county level, comparisons across counties could be threatened by, for example, dif-

ferences in voting technology or density of polling places. In our design, such county level

confounders are entirely avoided. Section A.1 in the appendix contains the exact wording of

the initiatives.

Figure 1 contains a map of Garfield Heights and its surrounding municipalities. The

first thing any analyst should do is assess whether the Garfield Height city limit is shared

by other borders in order to understand whether we can avoid compound treatments or

whether we will have to assume Compound Treatment Irrelevance. Garfield Heights and

the surrounding municipalities share the same U.S. House, State Senate, and State House

districts, thus avoiding compound treatments with those administrative units. Next, we look

5In addition to the initiatives, the ballot contained federal, state, and county-level elections. The ballot in
the city of Milwaukee and the ballot for those outside the city but inside the county differed in the presence
of the initiative we study, and also differed in their U.S. congressional races and state legislative races – an
issue we explore in our analysis below. There were three county-level offices on the ballot, but these races
were all county-wide offices such as county treasurer, which means they were constant across both treated
and control areas.
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at school district boundaries. Importantly, while we found that the border for the Garfield

Heights school district generally follows the city limit, houses in the northeast part of the

city fall within the Cleveland city school district. As a consequence, the northeast segment

of the border that separates Garfield Heights from Cleveland is populated by residents who,

despite being on opposites sides of the city border, belong to the same school district. Figure

2 contains a map of Garfield Heights with the school district boundary highlighted. For the

short segment of the municipal boundary highlighted in this figure, we can entirely avoid

the Compound Treatment Irrelevance assumption, since in this segment the municipal limit

is exactly isolated. For this reason, below we base our inferences on this area. Figure 2

also contains the location of elementary schools in the area along with the school rating

based on test scores from www.greatschools.org. The rating system runs from one to ten,

with one denoting the lowest quality schools. The quality of the school in Garfield Heights

that is within the Cleveland school district is similar to the quality of schools in Cleveland,

while other schools in Garfield Heights are rated considerably higher. Therefore, we base

our inferences on comparisons within this region.

Figure 3 contains a map of Milwaukee county, the area we study in our second example.

The area in yellow comprises the city of Milwaukee, which is surrounded by 17 suburbs that

are considered Minor Civil Divisions –the equivalent of a municipality in the U.S. Census.

Six of these municipalities do not share a border with the city of Milwaukee, while the rest

have contiguous borders with the city to varying degrees. While these are suburban areas,

they do not represent recent movements to the suburbs which have occurred much farther

west along the Interstate 94 corridor in Waukesha county. Unfortunately, unlike our first

example, school district boundaries overlap perfectly with the city limit. This is problematic,

since preferences for suburban schools could lead to differential sorting across the city border.

There are also several places where legislative districts follow the city limit. Thus, in the

Milwaukee example we have to assume Compound Treatment Irrelevance, making this design

less persuasive than the Ohio design.
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Below we use housing prices, which summarize information about neighborhood ameni-

ties, to select segments along the border where sorting seems to be less of a concern. We also

provide a formal comparison of schools in Milwaukee County in Section A.2 in the appendix.

Basic comparisons of Milwaukee to the surrounding suburbs demonstrate that the city is

more ethnically diverse, has lower housing prices, and lower socioeconomic status. Census

data from 2000 also reveals clear divisions between the city and its immediate suburbs. Me-

dian household income in Milwaukee is just under $34,000 while it is nearly $54,000 in the

suburbs. The percentage of African-American residents that are of voting age in Milwaukee

is 29% while it is less than 1.5% in the suburbs. The difference in median housing value is

nearly $60,000. While the percentage of high school graduates is nearly identical, nearly 21%

in the suburbs have a college degree while just over 12% in the city have a college degree. In

Section A.3 in the appendix, we provide more detailed comparisons and a map that shows

spatial variation in racial residential patterns. While the city of Milwaukee as a whole is

clearly quite different from its suburbs, in terms of research design the crucial question is

whether citizens near the city limit are more similar than what we observe based on full

samples of residents.

4 Data

We use the Ohio and Wisconsin voter files, the databases of registered voters maintained

by each state for administrative purposes to record voting outcomes. Both voter files also

contain a limited number of covariates: date of birth, gender, and voting history. The

Ohio voter file records party registration but not race, while the Wisconsin voter file records

neither race nor party registration. To better understand how the treated and control areas

might differ, we also use data from housing sales. Data from housing sales have a number

of advantages. First, according to hedonic pricing theory, a house can be seen as a bundle

composed of different attributes, and house prices can be used to infer the implicit prices

of these attributes, which include not only physical characteristics of the house but also
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Figure 3: Milwaukee County with Geographic Discontinuity Based on Milwaukee City Limit
Note: Areas outside Milwaukee County did not have any initiatives on the ballot.
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environmental characteristics of the neighborhood where the house is located, such as school

quality, safety, etc. Models of hedonic house prices have been used, for example, to estimate

the cost of local tax rates and to measure environmental quality (for reviews, see Sheppard

1999 and Malpezzi 2002). Second, these data are not aggregated, which allows us to precisely

estimate how they vary around the boundary of interest. To that end, we acquired records

for all houses sold in the appropriate zip codes in Cuyahoga County, Ohio, from 2008 to 2010,

and in Milwaukee county, Wisconsin, from 2006 to 2008. There were nearly 5,000 houses

sold in and around Garfield Heights and nearly 30,000 houses sold in Milwaukee County

during the time periods we study.

We also made limited use of Census data. First, we collected block level data. Blocks

are the lowest unit of census geography, but the number of covariates available at this level

is limited. At the block level, we have measures for the percentage of African-Americans

and Hispanics, as well as median-age. For the 2000 census, block group level data provide a

richer set of covariates such as education and income. The drawback is that a block group

contains between 600 and 3,000 people. Given the large size of block groups, it is often

difficult to tell whether there is meaningful spatial variation in block group level measures

as one approaches the boundaries of interest. For example, all of Garfield Heights is covered

by fewer than 8 block groups. Finally, we also collected electoral data, including partisan

vote shares for federal offices and the governor as well as aggregate turnout measures for the

two elections prior to the treated election. In Ohio, electoral data estimates are available

at the census block level; in Wisconsin, electoral results are aggregated to wards, which are

equivalent to precincts. In the next section, we describe how we used geographic information

systems software to process and geo-reference our data.

In both of the applications that follow, past turnout behavior would appear to be an

important pretreatment covariate to either condition on or use as a placebo outcome. That

is, in both cases past turnout is known to be unaffected by the ballot initiatives we study

in 2008 and 2010. However, past turnout might be affected by other initiatives in previous
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elections. For example, in 2006, the residents of Milwaukee voted on an anti Iraq War

initiative that was not on the ballot in the suburbs, implying that past turnout is not

strictly treatment free. This is less of a concern in Ohio given that 2008 was a presidential

election. In this case, we expect that any local level initiative would be of little consequence

compared to the turnout efforts of presidential campaigns in a battleground state. For these

reasons, in we avoid conditioning on past turnout in our analyses.

5 Geographic Analysis

We use Geographic Information Systems (GIS) software to process the data before the final

statistical analysis. We argue that without GIS analysis, geographic natural experiments are

significantly weakened. GIS software allows analysts to more fully exploit geography and

spatial proximity. We now outline the geographic analysis we performed to implement the

different designs in Garfield Heights and Milwaukee County.6

First, we geocoded both the voter file and data on housing sales. Geocoding is the

process of converting addresses into a coordinate system, typically latitude and longitude.

Geocoding allows us to know the distance between voters and the boundary of interest,7

and, in the case of the GRD design, to develop a score that reflects the two dimensions of

geographic space. Once we completed the geocoding, GIS software also allowed us to merge

the individual-level data from the voter file with covariates collected from larger geographies

such as census blocks and wards.8

Second, we used the latitude and longitude obtained from the geocoding to calculate the

6We performed all the geographic analysis in ArcgGIS 9.3.
7Geocoding starts by collecting formatted addresses for each voter. These addresses are then compared

to a known database of addresses and street locations and assigned a geographic reference such as latitude
and longitude.

8We did not use GIS software for calculating the value of the running variable in the GRD design, but
other analysts have used GIS software to calculate the distance between voters and politically relevant
geographic points. Brady and McNulty (2011); Haspel and Knotts (2005) use GIS software to calculate the
distance between voters’ addresses and their polling location. The method used by these analysts calculates
the shortest distance from each voter’s address to the point of interest. Such a distance can be calculated as
either the driving distance along streets or as a direct distance as the crow flies. Other work on voter turnout
has found little difference between these two distances (Brady and McNulty 2011; Haspel and Knotts 2005).
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spatial –or two-dimensional– distance between voter residences and the city limit directly. A

simple application of the Euclidean distance with the points defined by latitude and longitude

would be appropriate if voters resided in a plane, but the Earth is a sphere. Since naive

Euclidean distances calculated between geographic locations can severely overestimate the

distance, we used the chordal distance, a rescaling of the Euclidean distance that incorporates

the earth’s curvature (see Banerjee 2005).

Finally, we used GIS software for a number of smaller tasks in our Milwaukee and Ohio

examples. First, we created what is called a buffer around the city limit. The buffer is

a spatial object that records which voters fall within a specified distance of a geographic

boundary. We used a buffer to identify which voters are within 50, 100, 200, 300, 400, 500,

750 and 1000 meters from the city limit. Second, we used GIS to obtain a grid of points on

the city limit for the calculation of treatment effects. We did this by dividing the Milwaukee

city limit into points defined by latitude and longitude, spaced at intervals of at least one

kilometer. In Ohio, we used GIS to select final area of analysis – the area inside the Cleveland

school district highlighted in Figure 2.

6 Results

As we noted in Section 2, a number of different assumptions about geography may be invoked

for the identification of causal effects. In the analyses that follow, we provide estimates under

different identification strategies and evaluate whether exploiting geography directly appears

to improve credibility of the design. To that end, we focus on both the plausibility of the

assumptions outlined in Section 2 and how inferences change as a function of conducting

estimation based on each of these assumptions.

6.1 Garfield Heights

We first present the results from Garfield Heights, Ohio. We start with estimates based

on assumptions that exploits geography in a very limited way: we estimate the average

difference in turnout rates between the city of Garfield Heights and all adjacent cities, and
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then the average treatment effect controlling for a number of covariates via linear regression.

Since we do exclude some parts of Ohio and focus on one suburb of Cleveland, we have done

some limited geographic conditioning. These estimation strategies are based on Assumptions

1 and 2, respectively. As shown in Table 1, in both cases the estimate indicates that turnout

was nearly four percentage points higher in Garfield Heights. As mentioned in Section 2,

an analysis of this type does little to exploit geography, and we would not classify this as a

natural experiment in that treatment assignment is entirely a function of decisions by voters

and is not haphazard in any way. As such, there is little to suggest that the estimated effect

is not contaminated by unmeasured confounders.

Table 1: Garfield Heights, Ohio – Initiative Effect Estimates
Under Differing Assumptions

Geographic Conditional
Ignorability Ignorability

(Assumption 1) (Assumption 2)

Average Treatment Effect 3.5 3.9
Standard Error (0.01) (0.01)
N 893263 892660

Note: Point estimates are recorded as percentages. Estimation under

geographic ignorability assumption uses no covariates for adjustment.

Estimation under geographic conditional ignorability adjusts age, age-

squared, Democratic vote share for president and U.S. House in 2008,

Democratic vote share for U.S. Senate and House in 2006, percentage

Hispanic, percentage African American, percentage Asian, percentage

of owner occupied housing, percentage of vacant housing, aggregated

turnout from 2008 and 2006. Standard errors are adjusted for clustering

at the block level.

An alternative research design exploits geography more carefully in hopes of finding a

treatment assignment mechanism that is closer to as-if random. To that end, we could apply

a GLI or a GRD design. In both cases, we would use geographic information to compare

voters just outside Garfield Heights to voters just inside Garfield Heights. Both designs

would be more compelling if residents sorted around the Garfield Heights city limit in an
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as-if random fashion, an assumption we believe is plausible in the area of overlap between

the city limit and the Cleveland school district in northeastern Garfield Heights. In this area,

residents on both sides of the Garfield Heights city limit reside in the same school district

and we are able to avoid other compound treatments in this location. For these reasons, we

restrict our analysis to this small segment of the city limit, and the small area surrounding

it. Given that the border between the two areas is short, the area of analysis is small, and

we have strong evidence of covariate balance in this small area (see below), a GLI design

based on Assumption 4 appears appropriate for this application.

To better understand the plausibility of our identification assumption, we perform a bal-

ance analysis with on three different housing price comparisons. First, we compare Garfield

Heights to the entire surrounding metropolitan area. Second, we compare census blocks

that are within both the Garfield Heights municipality and school district to census blocks

that are within the Garfield Heights municipality but within the Cleveland school district.

Finally, we compare census blocks within the Cleveland school district and Garfield Heights

to the nearest set of census blocks that are also within the Cleveland school district but in

the city of Cleveland. These comparisons will help us understand whether Garfield Heights

appears to be generally different from the areas around it, and whether a clear discontinuity

exists at the school district border.

The results of this analysis, reported in Table 2, are striking. First, houses in Garfield

Heights are typically more expensive than those in adjacent municipalities, with a median

difference of $5600. We tested for equality of the two distributions with the Kolmogorov-

Smirnov (KS) test, and the p-value is statistically significant (p < 0.001). When we compare

prices for houses in the area of Garfield Heights that is inside the Cleveland school district

to prices for houses in the rest of Garfield Heights, the median difference is substantial at

$54,000. This comparison suggests that residents sort around the school district boundary

between Cleveland and Garfield Heights. However, when we compare the same northeastern

area of Garfield Heights to nearby census blocks in Cleveland, a comparison that keeps the
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Table 2: Garfield Heights, OH Balance Test for Housing Prices

Garfield Heights NE Garfield Heights NE Garfield Heights
to to to

Adjacent Municipalitiesa Garfield Heightsb Adjacent Cleveland Blocksc

Median Difference $5,600 $54,000 $20
KS Test p-value 0.00 0.00 0.77
NT 767 45 45
NC 4,110 724 129

Note: aComparison is all houses sold within the zip codes that surround Garfield Heights to all houses sold within

Garfield Heights from 2008 to 2010. bComparison is all houses sold within Garfield Heights that are not in Cleve-

land city school districts to all houses sold within Garfield Heights that are in Cleveland city school districts.
cComparison is to all houses sold within Garfield Heights that are in Cleveland city school districts to all houses

sold in the nearest 42 census blocks in Cleveland and are in the same school district.

school district constant, the median difference is a mere $20 with a KS test p-value of 0.77.9

Based on this evidence, it appears that the part of Garfield Heights that shares schools with

Cleveland is comparable to that part of Cleveland.

Given the results from the balance analysis, we think that a GLI design is plausible in the

area where the Cleveland school district overlaps with northeastern Garfield Heights. Here,

we can more forcefully argue that it might be an accident that someone lives in Garfield

Heights rather than Cleveland. By basing our inference on the GLI design as characterized

by Assumption 4, geography serves as useful method for reducing heterogeneity through a

more focused comparison where treated and control units are clearly more comparable. As

a result, we estimated the initiatives treatment effect by comparing turnout in the part of

Garfield Heights within the Cleveland school district to turnout in the adjacent parts of

Cleveland.

We estimate results with a simple difference in means for voters in this local area. As

a comparison, we also estimate the effect under Assumption 4.b, using a linear regression

9We also examined balance on the percentage of residents that are African American or Hispanic and
turnout in 2008 and 2006 with census block data. In both cases, the differences were not statistically
significant on either a t-test or KS test.
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specification to condition on age, party identification, the percentage of voters that are

African American or Hispanic, and the percentage of vacant houses. There is no need to

condition on legislative districts since all of Garfield Heights falls within the same state

and U.S. legislative districts. With the exception of the first two measures, these covariates

are census block level measures. The results are in Table 3. The simple estimate of the

treatment effect in this local area, at nearly ten percentage points, is much larger than the

estimates in Table 1. Conditioning on covariates decreases the magnitude of the effect, but

this estimate is still double what we found when we conditioned on the same covariates

in a larger geographic area. Given the empirical evidence based on housing prices, these

estimates are far more credible than those based on global ignorability assumptions.

Table 3: Garfield Heights, OH Initiative Effect Within
Areas with Overlapping School Districts

GLI Conditional GLI
(Assumption 4) (Assumption 4.b)

Treatment Effect 9.6 7.5
Standard Error (1.9) (2.0)
N 5463 5462

Note: Point estimates are recorded as percentages. Treated area

is the northeast part of Garfield Heights that is within the Cleve-

land school district. Control area consists of 42 nearest census

blocks that are within the city limits of Cleveland.

6.2 Milwaukee

We now estimate the effect of initiatives on turnout in Milwaukee. As in the Garfield Heights

example, instead of presenting one estimate from a single design, we proceed by exploring

whether our estimates change depending on the identification assumption we invoke. We

start with estimates based on Assumptions 1 and 2, which do not directly exploit geography.

We first estimate the average difference in turnout rates between the city of Milwaukee and

its suburbs, and then the same average treatment effect controlling for a number of covariates
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in a linear regression. The first two columns of Table 4 contain both estimates, and in both

cases turnout is lower in Milwaukee.

Next, we condition on distance alone using a GLI design under Assumption 4. We

estimate effects by taking the average difference in turnout rates between the city and suburbs

for those that live within a set distance from the city limit. Specifically, we define bands

or buffers of 50, 100, 200, 500, and 1000 meters on either side of the Milwaukee city limit

and calculate the average treatment effect for voters within each band via regression. We

adjust standard errors for clustering within census blocks, and we do not use any covariates.

The estimates are shown in the last five columns in Table 4, and are between -1 and -2.3

percentage points. That is, turnout in Milwaukee was typically lower in 2008 even in areas

near the city limit. What is notable is that conditioning on distance buffers alone plays a

very similar role to conditioning on covariates: the estimate in column 2 is generally similar

to the buffer estimates.

Next, we turn to a GRD design based on Assumption 5. We avoid implementing this

design in a naive way, since a simple examination of municipal level census data suggests

that there is high heterogeneity along the Milwaukee city boundary. For example, median

income in Milwaukee is $32,000 while in the suburb of Wauwatosa it is $55,000. However,

median income in the suburb of West Allis, which is adjacent to Wauwatosa to the south, is

$39,000.10

We analyze different points along the boundary to capture this heterogeneity using the

local linear estimator that is commonly used in RD designs (see, e.g., Hahn et al. 2001;

Porter 2003; Imbens and Lemieux 2008). Keele and Titiunik (2014) discuss in detail the use

of local polynomial estimation in geographic contexts. With this estimator, we choose a fixed

number of points along the boundary, and estimate the treated and control differences at each

point weighting each observation within a given bandwidth by its distance to the point. We

chose a fixed one-kilometer bandwidth for all points, but we also estimated mean-squared-

10Section a A.3 in the appendix contains a full comparison between Milwaukee and the suburbs.
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error (MSE) optimal bandwidths. Since these MSE-optimal bandwidths were in all cases

larger than one kilometer, our fixed bandwidth effectively undersmooths and ensures that

inferences based on conventional p-values and confidence intervals are valid (see Calonico,

Cattaneo, and Titiunik 2014b). We estimate effects in 85 points along the boundary–details

about how the points were selected are given in the appendix. We implemented estimation

with the rdrobust software.11 Since we perform many tests, we adjust p-values to control

the false discovery rate (FDR).

We plot the local effects on 2008 turnout in Figure 4, showing whether the estimated

turnout differential at each location is statistically significant. Interestingly, we observe some

clusters of significant and insignificant effects which suggests that the ballot initiative treat-

ment effect does vary along the Milwaukee city limit. The flexibility of the local polynomial

estimator comes at some cost in terms of interpretability, since we now have a large number

of estimates. Table 5 contains a summary of the estimates. As summary, we take the mean

of the local estimates across all boundary points, which provides a measure of the average

effect along the boundary if all points have equal density of observations. This mean is -2.36

percentage points.

Table 5: 2008 Milwaukee Ballot Initiative Effect Estimate
Based on Local Polynomial Estimator

GRD Design Estimate
(Assumption 5 )

Average of Estimates -2.36
Average p-value 0.32
Number of Boundary Estimates 85

Note: Estimates are recorded as percentages. Each of the 85 in-

dividual effects is estimated with a local linear estimator. The 85

boundary points cover the entire Milwaukee city limit.

We now probe the plausibility of Assumptions 4 and 5 with various analyses. Unlike

11Software available at https://sites.google.com/a/umich.edu/rdrobust. See Calonico, Cattaneo,
and Titiunik (2014a) for details on the STATA implementation, and Calonico, Cattaneo, and Titiunik
(2014c) for details on the R implementation.
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the Garfield Heights example, school district boundaries in Milwaukee county overlap per-

fectly with the Milwaukee city limit. This naturally raises questions about the validity of

Assumption 3. In addition, this also raises questions about Assumption 5, since there is

ample evidence that individuals often choose their place of residence based, for example, on

the quality of the schools in their neighborhood. If this type of sorting is pervasive, this

threatens identification in the GRD design based on Assumption 5.

We first study whether housing prices vary along the boundary. Figure 5 contains a

map of the area and plots the location of the local polynomial estimates for the house price

differential, showing which of those estimates are statistically significant based on FDR-

adjusted p-values. The local estimator shows that generally the house price differential is

significant when we compare Milwaukee to Wauwatosa and insignificant when we compare

West Allis to Milwaukee, which is consistent with the aggregate Census data. In general, we

observe considerable variability along the city limit in the house price differential.

Next, we analyze whether differences in housing prices between the treated and control

areas decrease as a function of distance to the city limit, which provides evidence regarding

the plausibility of Assumption 4. We repeat the buffer analysis in Table 4, but this time

using house sale prices as the outcome variable. These difference-in-means estimates within

each buffer allow us to observe whether imbalances in housing prices decrease as a function

of naive distance as measured by different buffers. We then match each treated unit within

each buffer to the closest control unit, where the closest control is defined as the control unit

whose chordal distance to the treated unit is lowest. Importantly, we do not apply matching

as method of covariate adjustment; instead, we use matching on distance to assess whether

balance in housing prices improves as a function of distance to the discontinuity. If the GRD

design is more appropriate than the GLI design, the house price differential between treated

and control areas should decrease within buffers as a function of non-naive distance to the

city limit. For the matching analysis, we rely on nearest neighbor matching with replacement

and ties are broken randomly.
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Table 6: Covariate Balance on Housing Prices Between Milwaukee and Immediate Suburbs as a
Function of Distance

Countywide 1000m 500m 200m 100m 50m
Comparison Buffera Buffer Buffer Buffer Buffer

House Price Diffb Naive (GLI design) -64265 -42860 -35052 -21410 -14805 -12453
Matched (GRD design) – -20389 -13746 -10077 -5235 1846

Note: aA buffer is a specified distance around the Milwaukee city limit. For example, with a 500m buffer all voters

who live more than 500 meters from the city limit are removed from the analysis before matching on geographic

distance occurs. bHouse Price Diff is the difference in dollars between the average house price in Milwaukee and

its immediate suburbs. Rows labeled Naive show the unadjusted mean difference between treatment and control

areas included in the buffer. Rows labeled Matched shows the mean difference between treatment and control

areas included in the buffer after nearest-neighbor matching on chordal (spatial) distance alone.

We report the average price differential between the city and the suburbs. As shown in

the first column of Table 6, this difference is nearly $65,000. Restricting that comparison

to housing sales within 1000 meters of the city limit drops the difference to nearly $43,000.

This imbalance decreases with smaller buffers; however, even within 50 meters the difference

remains over $12,000. This analysis shows that conditioning on a buffer around the boundary

as small as 50 meters is not enough to eliminate imbalances in housing prices. When we

use the chordal distance to ensure close spatial (two-dimensional) proximity as opposed to

naive proximity within buffers, the balance is much improved, as shown in the second row

of Table 6. The differential within the 1000 meter buffer is just over $20,000, compared to

over $40,000 with the naive distance. For the 100 meter buffer, the difference is just over

$5,000 and is less than $2,000 for the 50 meter buffer. This estimate is, however, statistically

significant.

The balance analysis suggests three things. First, the results clearly demonstrate that

using geographic distance in a non-naive way in the context of a GRD design produces much

better balance in a crucial pretreatment covariate. Second, it reveals that Assumption 5

is implausible in some points along the boundary. Third, we do observe improvement in

balance as a function of geographic distance. This implies that conditioning on geography
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may strengthen this natural experiment, since an improvement in the balance of observed

characteristics suggests that imbalances on unobservables may also improve as non-naive

geographic distance is minimized.

We explore how the results from the local linear estimator change when we restrict the

analysis to the points on the city limit where the house price differential is not statistically

significant and the estimated difference in housing values is less than $5000.12 This allows

us to include the information of our “placebo map”(Figure 5) in our estimation stage, and

restrict attention to those segments of the border where our identification assumption appears

most plausible based on housing values. We also estimate a simple regression model that

includes geographic proximity as an explanatory variable. In this specification, we use a

cubic polynomial of the distance from the voter to the city limit. This model includes

limited spatial flexibility in the estimation process, but does allow us to condition on a

large number of pretreatment covariates.13 As opposed to the first approach, the second

approach will potentially mask heterogeneity. This method also imposes strong functional

form constraints on geographic distance. To reduce heterogeneity further, we also restricted

the analysis to voters who lived within 500 meters of the Milwaukee city limit. We also

condition on the same set of covariates used to generate the estimates in column 2 of Table

4 including fixed effects of legislative districts.

We start with the results from the local estimator. In Figure 6, we plot the location of the

conditional 2008 turnout estimates. We denote whether the estimated turnout differential

at each location is either (i) statistically insignificant, (ii) statistically significant and in a

location where the housing estimate was also significant, or (iii) statistically significant and

in a location where the placebo test is passed (i.e., where the house price differential is not

statistically significant and is less than $5000). Of the 85 points we analyzed along the city

limit, 24 had a statistically significant turnout difference, and 12 of those estimates were at

12This is a stricter placebo test than basing the decision on statistical significance of house price differentials
alone.

13There are a number of options for parameterizing spatial distance to the city limit in a regression model.
We could also use latitude and longitude as covariates in some flexible fashion.
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points that passed the housing value placebo test.

The first column of Table 7 contains a summary of the turnout difference estimates for

locations where the house price differential was insignificant and less than $5,000, reporting

a simple mean of the local point estimates. For these locations, the mean difference was just

over one and half percentage points and the average p-value was 0.32. Thus, we find little

evidence from this analysis that the ballot initiative increased turnout, since we have mostly

insignificant results and a mean point estimate that is negative instead of positive as the

hypothesis suggests. Table 7 also contains the regression estimates (second column); in this

case, the ballot initiative effect is positive but is not statistically significant despite the fact

that there are more than one hundred thousand observations.

Table 7: 2008 Milwaukee Ballot Initiative Effect Estimates Conditional on
Geography and Covariates

Local Polynomial Regression With Covariates
Conditional on Housing Prices And Geography

Estimate -0.60 0.60
P-value 0.32 0.36

Note: Point estimates are recorded as percentages. In column one, the effect reported

is the mean of local-linear estimates on housing prices for all points on the Milwau-

kee city limit where the difference in house prices was not statistically significant and

was less than $5,000 (and p-value reports the mean FDR-adjusted p-value across the

points). Regression estimate in column 2 is restricted to observations within 500 me-

ters of the city limit and includes latitude and longitude as right hand side covariates.

The model also adjusts for sex, age, age-squared, percent minority, percent African

American of voting age, median income, median housing value, percentage of hous-

ing units that are owner occupied, percentage with a high school degree, percentage

with a college degree, Democratic vote share for president and U.S. House in 2004,

Democratic vote share for governor and U.S. Senate in 2006, and fixed effects for

U.S. House district and state legislative districts. Standard errors are adjusted for

clustering at the block level.
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7 Conclusion

Often natural experiments are the only means available to make a compelling case that an

estimated correlation is causal. We have reviewed different assumptions that may be invoked

in the presence of geographically varying treatments to produce valid casual effects. We have

given particular attention to the Geographic Local Ignorability design and the Geographic

Regression Discontinuity design, where in both cases the analyst compares units close to

a border that separates adjacent treated and control areas. In the hierarchy of geographic

natural experiments, designs that exploit the adjacency of treated and control areas are often

the most promising. Treatments that vary with borders are ubiquitous in political science,

since many political institutions often change sharply at geographic boundaries.

In both the GLI and GRD designs, pretreatment covariates should be similar near the

boundary, which provides a clear and testable implication of the key identification assumption

in each design. The difficulty facing both designs is that they are particularly vulnerable to a

violation of their key identifying assumptions, because quite often agents are able to sort very

precisely around the boundary that separates the areas of interest. If this sorting becomes

too precise, the identification assumptions may not hold. Thus, understanding whether a

specific GLI or GRD design allows for identification of the parameter of interest requires

substantive knowledge and careful evaluation of how observable characteristics behave as

distance to the boundary decreases. If balance in important pretreatment characteristics

does not improve as function of distance, then the designs might not be credible.

Another obstacle that researchers may face when using geographic variation to make

causal inferences is that it might be difficult to separate the effect of the treatment of inter-

est from other features of the geographic unit. That is, the Compound Treatment Irrelevance

Assumption may not be very compelling in many contexts. In our applications, we sought

to isolate the effect of ballot initiatives on turnout. In Garfield Heights, we were able to sep-

arate the boundary of interest from other borders. But in Milwaukee, it was impossible to
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isolate the city limit. When several borders coincide, the likelihood that units are precisely

sorting on at least one of the borders increases, undermining the plausibility of geographic

designs. When we were able to isolate the city limit from school district boundaries in Ohio,

the difference in housing prices between both sides of the border shrank dramatically, giving

strong credibility to the design. In Milwaukee, the GRD design exhibited some credibility

given that the difference in housing prices became quite small near the city limit, but one

can still imagine many unobserved confounders that may account for why one might live in

the suburbs as opposed to the city of Milwaukee. This is not to say that the GRD design

does not have advantages in this example. Given how balance improves as a function of

distance, it suggests that a comparison along the Milwaukee city limit is worth exploiting

as a discontinuity instead of relying on standard model-based methods with specification

assumptions. But overall, we think our Wisconsin example illustrates many of the difficul-

ties that geographic natural experiments may face, while our Ohio example illustrates the

advantages that those designs can provide when their assumptions are reasonable.

Our empirical applications illustrate the general point that research designs usually be-

come more credible when they are more local. That is, by focusing on small homogeneous

geographic areas, we are more confident that people who look comparable are comparable.

Whether this is achieved by invoking a GLI or a GRD design should depend on whether

Assumption 4 or Assumption 5 is most plausible. In particular, when the border is long, the

naive measure of distance employed in the GLI design will tend to be inappropriate and a

GRD design may be preferable. Finally, the framework we have developed hinges crucially

on the availability of high-quality geographic data. Unless the analyst can accurately define

geographic locations, he or she may have little choice and be forced to estimate spatially

constant effects.

In sum, while GLI and GRD designs may be vulnerable to violations of their identifying

assumptions, geographic natural experiments can also make strong designs in that, given

geo-referenced data, they can provide rich information about the behavior of pretreatment
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covariates (and even pretreatment or “placebo” outcomes) along the border. But the plau-

sibility of these designs can only be evaluated on a case-by-case basis. There is little hope

that GLI and GRD designs can be mass-produced, as they require careful attention to not

only the statistical analyses needed to justify their assumptions, but also to the geographic

analysis needed to fully assess their plausibility and exploit the variation that occurs at the

geographic boundary.
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Appendices

A.1 Ballot Initiative Text
The exact language on the ballot in Garfield Heights was as follows:

An amendment to the Charter of the City of Garfield Heights to enact Section
59 to limit use of photomonitoring devices to detect certain traffic law violations.

An amendment to the Charter of the City of Garfield Heights to enact Section
60 to abolish the tax on trash collection enacted by the Council and prevent any
such future enactment.

The exact language on the ballot in Milwaukee was as follows:

Shall the City of Milwaukee adopt Common Council File 080420, being a substi-
tute ordinance requiring employers within the city to provide paid sick leave to
employees?
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A.2 Milwaukee School Performance Analysis
In the main analysis, we examined whether a large number of covariates changed discontin-
uously at the Milwaukee city limit. One covariate that we did not include in the analysis is
a measure of school quality. We excluded measures of school quality because house prices
should reflect differences in local school quality. Several papers in the economics literature
have established that houses in areas with better schools demand a price premium (Black
1999; Bayer, Ferreira, and McMillan 2007; Lavy 2006). As such, any difference in school
quality between Milwaukee and its suburbs should be reflected in our analysis of housing
price differentials. Despite this, we did examine data on school quality. To assess the dif-
ference between schools in and outside of Milwaukee, we used results from the Wisconsin
Knowledge and Concepts Examination (WKCE) from the Wisconsin Student Assessment
System. The WKCE is a large-scale, standardized achievement test given to all students in
grades 4 and 8 and includes sections on reading, language, arts, mathematics, science, and
social studies. The state of Wisconsin does not release test scores for specific schools, but
instead reports the percentage of students that are advanced, proficient, basic, or minimally
performing.

In Milwaukee county, there are 172 elementary schools that administered the WKCE
to fourth grade students. We collected the addresses for all of these schools and geocoded
them to obtain latitude and longitude and calculate distances to the city limit. The state
of Wisconsin rates schools by the percentage of students that are advanced or proficient.
Table 8 contains the results from three comparisons. We only compared school performance
on the reading and math components of the exam, and we averaged results from 2006 and
2007 to remove chance fluctuations. The first comparison is based on all schools in the city
of Milwaukee and all schools in the suburbs. The key difference between Milwaukee and its
suburbs is that a much larger percentage of students are classified as advanced in the suburbs.
To make the comparison more local, we next restrict the analysis to the Milwaukee schools
that are no more than 1000 meters away from the city limit. We see modest improvement
as the percentage of students that are classified as advanced increases slightly. We next
match on spatial distance within the 1000 meter buffer. Now the gains are more substantial.
While suburban schools still have a higher percentage of advanced students, the gap between
the city and suburbs is reduced from a gap of 27.2 and 28.6 percentage points to 13.6 and
13.1 percentage points for mathematics and reading, respectively. This fits with our general
pattern of improvement in covariate balance as we get closer to the city limit.
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Table 8: Balance on School Test Scores Between the City of Milwaukee and its
Suburbs

Unmatched 1000m Buffer Spatial Distanceb

Treated Control Treated Control Treated Control

Math Advanced 13.1 40.3 16.2 39.3 26.5 40.1
Math Proficient 34.3 38.8 39.4 38.2 42.7 39.4
Reading Advanced 17.9 46.5 22.9 45.9 33.4 46.5
Reading Proficient 42.4 35.9 45.5 34.7 43.2 35.6

Note: Cell entry is the percentage of students performing at an advanced or
proficient level. bMatching on spatial (chordal) distance within the 1000 meter
buffer.
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A.3 Baseline Comparisons Between Treated and Con-

trol Areas
Here we provide additional information on how Milwaukee and Garfield Heights differ from
the surrounding municipalities. First, in Figure 7 we map spatial variation in racial residen-
tial patterns in Milwaukee. This map clearly demonstrates that African-Americans primarily
live in the northern part of the city, and in this region there are stark differences between
Milwaukee and the suburbs. In the southern part of the city, however, we see that differences
are less stark. Suburbs such as West Allis, Greenfield, and St. Francis have racial patterns
that are very comparable to adjacent areas in Milwaukee. These differences closely match
what we find applying the local polynomial estimator to housing prices. Table 9 contains
a comparison between Milwaukee and its immediate suburbs using Census data from 2000.
As we noted in the text, Milwaukee differs substantially from many of the suburbs. Table 10
contains a comparison between Garfield Heights and its immediate neighbors using Census
data from 2000.

Table 9: Census Profiles of Milwaukee and its Immediate Suburbs

Name %African- High College Median % Below % Unemployed Median
American School Income Poverty Age

Bayside 2.8 13.6 35 88982 3 0.9 46.5
Brown Deer 12.5 26.7 21.4 50847 2.4 2 42.2
Cudahy 0.9 39 10 40157 5.6 2.9 37.7
Fox Point 1.2 9.6 38 80572 1.8 0.7 43.5
Franklin 5.2 28 20.6 64315 1.4 1.8 37.9
Glendale 8.1 20 25 55306 2.6 1.8 45.6
Greendale 0.2 28 23.8 55553 3 1.8 43.6
Greenfield 1 33.4 14.8 44230 3.4 2.1 41.7
Hales Corners 0.2 27.5 24.8 54536 2 2 41
Milwaukee 37.3 30.2 12.3 32216 17.4 6 30.6
Oak Creek 1.8 32.2 18.9 53779 1.2 1.6 34.5
River Hills 4.9 5.8 38.9 161292 0.4 0.5 45.7
Shorewood 2.4 12.4 35.4 47224 3.8 1.2 37.8
South Milwaukee 1 38.9 11.5 44197 4.5 2.8 38.1
St. Francis 1 39.8 9.5 36721 2.7 3.2 40
Wauwatosa 2 19.4 30.5 54519 2.3 1.5 39.1
West Allis 1.3 36.1 12.1 39394 4.6 3 37.8
West Milwaukee 3.5 31.3 10.4 35250 7.5 4.4 36.1
Whitefish Bay 1 8.4 41.2 80755 2.4 1.1 38.2

Source: 2000 Census. All of these units are considered to be minor civil divisions or places by
the census. All are within Milwaukee county.
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Figure 7: Racial Composition in Milwaukee at the Census Block Level
Source: 2000 Census. Colors represent the percentage of African-Americans who are of voting age
by census block.
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Table 10: Census Profiles of Garfield Heights and Surrounding Municipalities

Name %African- High College Median % Below % Median
American School Income Poverty Unemployed Age

Bedford 17.6 40 12.7 36,943 7.6 2.1 39
Brooklyn Heights 0.8 32.2 19.4 47,847 2.2 0.9 41.6
Cleveland 51.0 33.2 7.6 25,928 26.3 6.4 33
Cleveland Heights 41.8 15.6 24.7 46,731 10.6 2.6 35.2
Cuyahoga Heights 0.0 44.9 7.2 40,625 5.7 2.2 42.4
Garfield Heights 16.8 42.1 8.7 39,278 8.5 3.8 38.3
Independence 0.6 33.5 18.3 57,733 3.6 1.2 43.3
Maple Heights 44.3 40.3 9.9 40,414 5.9 3.3 37.4
Newburgh Heights 3.1 44.2 7.2 37,409 12 4.2 37.3
Seven Hills 0.1 38 14.5 54,413 2.6 1.7 47.3
Valley View 0.3 36 14.4 64,063 3.1 1.5 42
Warrensville Heights 90.4 32.2 11.2 37,204 11.4 5.3 37.7

Source: 2000 Census. All of these units are considered to be minor civil divisions or places by the
census. All are within Cuyahoga county.

A.4 Selection of Boundary Points and Bandwidth
We initially chose bandwidths using data-driven selection procedures that minimize a mean-
squared error (MSE) criterion specially suited for estimating a discontinuity jump in the
regression function (see Imbens and Kalyanaraman 2012; Calonico et al. 2014b). In some
cases, however, these optimal procedures could not deal adequately with sparse boundary
points where there are no observations close to the border. This mostly occurred in non-
residential areas along the Milwaukee border. For example, the Milwaukee city limit falls
exactly on the outer limit of the Milwaukee airport. To address this issue, we developed a
criterion to decide whether a boundary point was sparse (in which case it was excluded from
the analysis).

We first divided the Milwaukee city into approximately 143 boundary points separated
by 1km. For every point, we set a fixed bandwidth of 1 kilometer, and calculated the number
of observations that received positive weights with a triangular kernel. We did this for the
treated and control observations separately. When this minimum number of observations
was below 100 in either the treated or the control group, the point was declared sparse
and no estimation was performed at that point. For all remaining points that satisfied the
minimum observations requirement, we calculated the minimum and the 10th percentile
of the distances of each unit to the boundary point, for observations in the treated and
the control areas separately. When the minimum distance was less than (or equal to) 0.10
kilometers and the 10th-percentile distance was less than (or equal to) 0.50 kilometers,
the points was included in the analysis. The remaining points were declared sparse and
no estimation was performed for them. Close inspection of Figures 5 and 4 reveals that
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the algorithm clearly excludes areas that are nonresidential for a number of reasons. We
included 85 boundary points in our final analysis. We then used the fixed 1km bandwidth for
analysis in these 85 non-sparse points. As mentioned in the text, for all the points included
in the analysis, the MSE-optimal bandwidths were larger than 1km, which means that
our fixed 1km bandwidths effectively undersmooth and the leading asymptotic bias in the
conventional distributional approximation becomes negligible. This means that inferences
based on conventional confidence intervals and p-values are valid. See Calonico, Cattaneo,
and Titiunik (see 2014b) for details, and for a robust alternative to conventional confidence
intervals that leads to valid inferences even in the absence of undersmoothing.
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