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1 Introduction: Example, Notation, and Elementary

Analyses

1.1 Presidential Campaigning for Co-Partisans

The powers of U.S. presidents are largely informal. The veto and power of appointment are

rare instances of formal powers given the president in the Constitution. Presidential power

arises from the more informal power to persuade Congress (Neustadt 1960). One powerful

means of persuasion is to make Members of Congress indebted to the president. One method

that presidents have at their disposal to develop such indebtedness is the Congressional

campaign visit. Here, the president makes a personal visit on behalf of someone running for

the House or the Senate. Campaign visits by presidents are likely to be more effective for

candidates to the House, which are often low information affairs. Voters may know little

about a candidate for the U.S. House, so a presidential visit may serve as a powerful cue

about the candidate given the amount of information available about the president.

Political scientists have attempted to estimate the causal effect of a presidential visit

(Herrnson and Morris 2007; Sellers and Denton 2006; Cohen et al. 1991; Keele et al. 2004).

Particular attention has been paid to the 2002 midterm election, when George W. Bush

campaigned extensively for Republican candidates. A number of media reports inferred that

a campaign visit that year was highly effective in helping candidates win (Keele et al. 2004).

Of course, these analyses must rely on observational data, and the resulting estimates of

causal effects are subject to confounding. To increase the credibility of the estimates as causal

effects, analyst adjust for observed covariates. However, much of the data available are simply

descriptive characteristics of the Congressional district such as the level of education or

income in the district. Since the actual decision-making process of presidents is unobserved,

there is little reason to believe that adjusted estimates are credible causal effects. Like many

areas of study in the social sciences, experimentation is not possible, and estimated statistical
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associations are in all likelihood highly confounded.

Many researchers might say little about causal effects can be learned from such data.

While there are certainly aspects of truth to the position that unmeasured confounding sim-

ply cannot be overcome in many cases, it is possible to learn some things about the size

of the causal effects of interest regardless of the nature and degree of the unmeasured con-

founding. For instance, Manski (1990) derived bounds for the average treatment effect under

very general assumptions and showed that, in the case of binary treatment and outcome, the

width of these bounds is 1.1 Since the average treatment effect can take values between -1

and 1, Manski’s bounding interval always includes the null value of no effect. Manski (2003)

has also shown how auxiliary assumptions can narrow this bounding interval.

This paper further explores what can be learned about treatment effects under arbitrary

forms of unmeasured confounding. We reduce the case of arbitrary unmeasured confounding

with binary treatment and binary outcome to its most basic, yet still general, form that

retains a readily interpretable parameterization of the key quantities. We then show how a

Bayesian prior distribution can be placed over the four free parameters that govern the type

and extent of the unmeasured confounding. If one is willing and able to use background

knowledge to make some (possibly weak) assumptions about the nature of the unmeasured

confounding, sharp posterior estimates of causal effects are easy to calculate. Since these

assumptions are formalized within the Bayesian framework, subjective uncertainty about

causal effects is calculated in a logically coherent manner. The end result is a procedure

that allows researchers to make probability statements about the likely size of causal effects

based on the evidence in a 2× 2 (or 2× 2×K) table regardless of the sample size and the

amount of unmeasured confounding.

1For related work see Robins (1989); Manski (1993, 2003); Imai and Yamamoto (2008) and Balke and
Pearl (1997).
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1.2 Notation and Causal Model

Next, we present our notation and place our analysis in the formal statistical framework

of causal inference based on potential outcomes (Holland 1986a). For each Congressional

district i = 1, 2, . . . , 435, we define two potential outcomes Yi(1) and Yi(0) ∈ [0, 1]. Yi(1)

denotes a potential electoral victory by the candidate in district i wins the election when the

president campaigns for that candidate through a personal visit to that district. In contrast,

Yi(0) represents a potential victory by the candidate in district i when the president does not

campaign on the candidates behalf. We use the indicator variable Di ∈ [0, 1] to denote the

treatment status in district i. In our application, Di is equal to 1 if the president campaigned

for candidate in district i through a personal visit and 0 otherwise. Under this causal model,

the observed outcome is a function of the treatment variable and the potential outcomes:

Yi = Yi(1)Di + (1 − Di)Yi(0). In our notation, we use upper-case letters to distinguish a

random variable from its realization. The fundamental problem of causal inference is that

for a single unit at most only one of the potential outcomes can be revealed (Holland 1986a).

This framework implicitly assumes that there is no interference among units: the potential

units of one unit do not depend on the treatment of other units (Cox 1958; Rubin 1990).

In our application, this assumption implies that the potential electoral victory status of a

candidate in one district do not depend on whether the president campaigned for a candidate

in another district. This assumption is reasonable given that presidents campaign for specific

candidates and a visit is unlikely to help other candidates that did not specifically receive a

presidential campaign visit.

Under this framework, the individual level causal effect is defined as a contrast in potential

outcomes: Yi(1) − Yi(0). Rather than focusing on unit-level causal effects, we will concern

ourselves with aggregate effects within some collection of units. The causal quantity that we

focus on is the average treatment effect (ATE)

ATE = E[Yi(1)− Yi(0)] (1)
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though many other causal estimands are possible such as the average treatment effect on the

treated. This causal estimand, however, depends on counterfactual quantities. While we an

easily calculate E[Yi = y|Di = d] from the observed joint distribution of Yi and Di and use

those in place of counterfactual quantities in Equation 1, these counterfactual quantities can

only be estimated consistently from the joint distribution of the data if untestable causal

assumptions are maintained (Rubin 1978; Holland 1986b; Robins 1986; Pearl 1995, 2000).

Under SUTVA, if one is willing to assume that treatment assignment is strongly ignorable

Yi(D) ⊥⊥ Di then the estimated quantities will be equivalent to the counterfactual quanti-

ties in Equation 1. In a well-run randomized controlled experiment, strong ignorability of

treatment assignment and SUTVA are likely to hold because of the design of the experiment.

However, with observational data, analyst often invoke the assumption of conditionally

ignorability. Under conditional ignobility the claim is that there exists a collection of pre-

treatment variables U such that treatment assignment is conditionally ignorable given U.2

Conditional ignorability is generally considered to be a strong assumption, since the analysts

must assume that U contains all common causes of Di and Yi. Moreover, this assumption

is not testable with data. We focus on what can be learned about Equation 1 when U is

completely unobserved.

1.3 Data and Elementary Analyses

Our data is from the 2002 midterm election in the United States. These data were first

reported in Keele et al. (2004). The outcome is measured as a binary indicator for whether

the Republican candidate won the election or not and was constructed from Congressional

Quarterly’s Politics in America (2001). The treatment indicator is whether George W.

Bush campaigned on behalf of U.S. House candidate through a personal appearance in that

members district. Keele et al. (2004) used Lexis-Nexus state level AP reports from the 2002

election cycle to determine whether President George W. Bush personally campaigned for

the Republican candidate between Labor Day and the election in November. The observed

2Here strong ignorability of treatment assignment holds within each level of U.
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data can be easily summarized in a 2×2 cross-tabulation as in Table 1. The cross-tabulation

excludes races where one candidate ran unopposed.

Table 1: Observed Data For Presidential Visits in 2002

Yi = 0 Yi = 1
Republican Loses Republican Wins

No Visit Di = 0 164 163

Visit Di = 1 3 18

We see that the president visited 21 different Republican candidates. Of the 348 races

with two candidates, the president only selected approximately six percent for a campaign

visit. A naive analysis that assumes there is no confounding would clearly conclude that

presidential visits are effective in helping Republican candidates win elections. The pro-

portion of candidates that won when the president visited was .86 while the proportion of

candidates that won without a presidential visit was .50, from these observed data quanti-

ties we can calculate the average treatment effect at .36 with a large sample 95% confidence

interval (0.20, 1.0). Of course, confounding is likely as president’s may strategically select

candidates for visits when they perceive those candidates as being particularly able to win.

We ask what can be learned about the ATE from Table 1 by placing reasonable assumptions

on U?

The paper proceeds as follows. In Section 2 we introduce the necessary terminology and

notation and demonstrate how inferences can be constructed from a 2 × 2 table with gen-

eral unmeasured confounding. Section 3 shows how causal quantities of interest such as the

average treatment effect can be written in terms of the model parameters from Section 2.

Large sample nonparametric bounds on these causal quantities are also derived in this sec-

tion. These bounds coincide with those of Manski (1990) although the derivation is slightly

different. Section 4 discusses the choice of prior distribution for the model parameters and
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Yi(Di = 0) Yi(Di = 1) Zi

0 0 0 Never Succeed
0 1 1 Helped
1 0 2 Hurt
1 1 3 Always Succeed

Table 2: Possible Patterns of Potential Outcomes and Coarsest General Confounding Vari-
able. A unit i for which Zi = 0 has a value of Ui that causes it to always have Yi = 0
regardless of the (counterfactual) value of Di. We say these units are “never succeeders”.
If Zi = 1 we say that unit i is “helped” by treatment because its potential outcome under
Di = 1 is equal to 1 (success) while its potential outcome under Di = 0 is 0 (failure). If
unit i has Zi = 2 we say that i is “hurt” by treatment because its potential outcome under
D − i = 1 is equal to 0 (failure) while its potential outcome under Di = 0 is 1 (success).
Finally, if Zi = 3 we say that i is an “always succeeder” because its value of Ui is such that
Yi will always equal 1 regardless of the (counterfactual) value of Di.

then describes a simple posterior sampling algorithm that does not require Markov chain

Monte Carlo. Section 4 also describes the construction and interpretation of the novel con-

founding plot discussed above. In Section 5 we revisit the example data in Table 1. Here we

see how defensible prior beliefs can be operationalized in a prior distribution over the model

parameters and what this implies for inferences about a possible presidential visit treatment

effect. The final section concludes.

2 Probability Model under Unobserved Confounding

While U may be extremely complicated, the binary nature of both treatment and outcome

implies that the domain of U can be partitioned into four equivalence classes depending on

the pattern of potential outcomes associated with each point in the domain of U (Angrist

et al. 1996; Balke and Pearl 1997; Chickering and Pearl 1997). We introduce a new categorical

variable Zi that labels these equivalence classes. The values of Zi along with the associated

patterns of potential outcomes are presented in Table 2.

If Zi were observed, one could write the post-intervention distribution, PDY Z , as

Pr(Y (D = d) = y) =
3∑

z=0

Pr(Y = y|D = d, Z = z) Pr(Z = z).
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The probabilities on the right-hand-side of the equation above can be calculated directly

from PDY Z . In our application, as is common in the social sciences, Zi is unobservable for

any i. Without data on Zi, it is impossible to consistently estimate PDY Z . Nevertheless,

there is some information about Zi in observed (D, Y ) data sampled from PDY Z . The goal

of this paper is to show how this information can be combined with subjective background

knowledge to yield causal inferences from 2×2 and 2×2×K tables even when the confounding

variables in U are not measured.

2.1 Likelihood

We adopt a Bayesian approach to make inferences about the form of PDY Z without informa-

tion on Zi. The main reason for taking a Bayesian approach in this paper is that it allows us

to incorporate background knowledge about the (potentially unobserved) confounder Zi in a

principled fashion (Kadane and Wolfson 1998; Western and Jackman 1994; Gill and Walker

2005). We begin by discussing the likelihood function and then discuss our choice of prior

distribution along with the resulting posterior distribution.

Let Zi denote the set of possible values Zi could take given the observed data on unit i.

More formally,

Zi =



{0, 1} if di = 0, yi = 0

{2, 3} if di = 0, yi = 1

{0, 2} if di = 1, yi = 0

{1, 3} if di = 1, yi = 1

We can then write the likelihood as:
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p(d,y|θ,ψ) =
n∏

i=1

∑
zi∈Zi

p(di, yi, zi|θ,ψ)

=
n∏

i=1

p(di, yi|θ)

{∑
zi∈Zi

p(zi|di, yi,ψ)

}

=
n∏

i=1

θ
I(di=0,yi=0)
00 θ

I(di=0,yi=1)
01 θ

I(di=1,yi=0)
10 θ

I(di=1,yi=1)
11 ×{ ∑

zi∈Zi

ψ
I(di=0,yi=0,zi=1)
00 (1− ψ00)

I(di=0,yi=0,zi=0)×

ψ
I(di=0,yi=1,zi=3)
01 (1− ψ01)

I(di=0,yi=1,zi=2)×

ψ
I(di=1,yi=0,zi=2)
10 (1− ψ10)

I(di=1,yi=0,zi=0)×

ψ
I(di=1,yi=1,zi=3)
11 (1− ψ11)

I(di=1,yi=1,zi=1)

}

= θ
C00+

00 θ
C00+

01 θ
C10+

10 θ
C11+

11 (2)

where I(·) is the indicator function, Cdy+ =
∑n

i=1 I(di = d, yi = y), θ00, θ01, θ10, θ11 ≥ 0,

θ00 + θ01 + θ10 + θ11 = 1, and ψ00, ψ01, ψ10, ψ11 ∈ [0, 1].

While this model for (D, Y, Z) might seem to contain a large number of parameters, there

are two key sets of parameters θdy and ψdy for d = 0, 1 and y = 0, 1. The θ parameters govern

a multinomial distribution for the distribution of (Di, Yi) after Zi has been marginalized out

of PDY Z . The ψ parameters govern the conditional distribution of Zi given Di and Yi. Note

that because of the definition of Zi (see Table 2) only 2 values of Z are logically possible

given any admissible (Di, Yi) pair. The distribution of Zi given Di = d and Yi = y is thus

Bernoulli with parameter ψdy. Here, ψ01 gives the probability that Zi = 3 given Di = 0 and

Yi = 1 while (1 − ψ01) gives the probability that Zi = 2 given Di = 0 and Yi = 1. The

other conditional distributions for Zi given Di = d and Yi = y are similarly parameterized.

Table 6 in the appendix provides a complete summary of the parameters and their intuitive

meanings.
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2.2 Prior and Posterior

Bayesian inference centers on the posterior distribution of θ and ψ given the observed data.

The posterior distribution is given (up to proportionality) by:

p(θ,ψ|y,d, z) ∝ p(y,d, z|θ,ψ)p(θ,ψ)

We defined the likelihood, p(y,d, z|θ,ψ), in the previous section, and we now discuss

specification of the prior distribution p(θ,ψ). A natural choice for the joint prior distribution

of θ and ψ is to assume that θ, ψ00, ψ01, ψ10, and ψ11 are mutually independent a priori and

that θ ∼ Dirichlet(a00, a01, a10, a11), ψdy ∼ Beta(bdy, cdy), for d = 0, 1 and y = 0, 1. This

is the conjugate prior distribution for this model. This prior specification will allow us

to think of the hyper-parameters ady, bdy, and cdy for d = 0, 1 and y = 0, 1 as additional

“pseudo-observations.” This makes the prior distributions more easily interpretable, which

is important for the current application where inferences are dependent on the prior.

Combining this prior with the likelihood in Equation 2 gives us the following posterior

density (up to proportionality):

p(θ,ψ|d,y) ∝ θ
C00++a00−1
00 θ

C01++a01−1
01 θ

C10++a10−1
10 θ

C11++a11−1
11 ×

ψb00−1
00 (1− ψ00)

c00−1ψb01−1
01 (1− ψ01)

c01−1×

ψb10−1
10 (1− ψ10)

c10−1ψb11−1
11 (1− ψ11)

c11−1 (3)

Note that the only information about ψ is coming from the prior distribution. This implies

that inferences that depend on ψ will be dependent on one’s choice of prior for ψ.

3 Causal Quantities of Interest

Next we discuss how causal quantities such as the ATE can be calculated based on beliefs

about ψ. Typically causal quantities are calculated directly from the data based on an as-
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sumption of conditional unconfoundedness. In our analysis of whether presidential campaign

visits help candidates, unconfoundness, conditional or otherwise, is unrealistic. In our ap-

proach, based on the probability model specified in Section 2, we calculate causal quantities

that depend on the parameter ψ. We denote these as sensitivity analysis quantities since

the inference is based on prior beliefs about the unobserved distribution of Zi. Sensitivity

analysis quantities depend on the distribution of Zi through the following set of equations:

Prs(Y (D = 0) = 0) =
3∑

z=0

Pr(Y = 0|D = 0, Z = z) Pr(Z = z)

= Pr(Z = 0) + Pr(Z = 1)

= θ10(1− ψ10) + θ11(1− ψ11) + θ00

Prs(Y (D = 0) = 1) =
3∑

z=0

Pr(Y = 1|D = 0, Z = z) Pr(Z = z)

= Pr(Z = 2) + Pr(Z = 3)

= θ10ψ10 + θ11ψ11 + θ01

Prs(Y (D = 1) = 0) =
3∑

z=0

Pr(Y = 0|D = 1, Z = z) Pr(Z = z)

= Pr(Z = 0) + Pr(Z = 2)

= θ00(1− ψ00) + θ01(1− ψ01) + θ10

Prs(Y (D = 1) = 1) =
3∑

z=0

Pr(Y = 1|D = 1, Z = z) Pr(Z = z)

= Pr(Z = 1) + Pr(Z = 3)

= θ00ψ00 + θ01ψ01 + θ11.

If ψ were known the sensitivity analysis post-intervention distribution would yield the true

post intervention distribution. Of course, ψ is never known (and typically not identified)

so the sensitivity analysis post-intervention distribution will depend on one’s prior beliefs
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about ψ.

3.1 Average Treatment Effects

Next, we describe how causal quantities can be calculated based on values of ψ. Here, we

focus on the ATE. While we focus on the ATE, it is also possible to define average treatment

effects on the treated (ATT) or just the control group (ATC) and calculate bounds and

sensitivity analysis distributions for these estimands as well. Moreover, we can also calculate

sensitivity analysis quantities based on the relative risk as well. The sensitivity analysis ATE

is defined as:

ATEs = Prs(Y (X = 1) = 1)− Prs(Y (X = 0) = 1)

= (θ00ψ00 + θ01ψ01 + θ11)− (θ10ψ10 + θ11ψ11 + θ01) (4)

Manski (1990) derived nonparametric bounds for the average treatment effect that will

contain the true average treatment effect with probability 1 as sample size goes to infinity.

Here, we show how these bounds can be calculated as a function ψ. Inspection of Equation

4 reveals that the minimum value of ATEs will occur when ψ00 = 0, ψ01 = 0, ψ10 = 1, and

ψ11 = 1. Similarly, the maximum value of ATEs will occur when ψ00 = 1, ψ01 = 1, ψ10 = 0,

and ψ11 = 0. Substituting these values into the expression for ATEs and recognizing that

ATEs = ATE we see that:

ATE ∈ [−(θ10 + θ01), (θ00 + θ11)]

Substituting the MLEs for θ00, θ01, θ10, and θ11 we see that (in a slight abuse of notation)

lim
n→∞

Pr

(
−C01+ − C10+

n
≤ ATE ≤ C00+ + C11+

n

)
= 1
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where it is understood that the Cxy+ counts also depend on n. Note that this interval will

always include 0. Further, as Manski (1990) has shown, and as is easy to see here since∑
x

∑
y θxy = 1, the width of this interval will always be 1.

4 Bayesian Inference For Causal Effects

We next describe a Bayesian method for obtaining sensitivity analysis quantities. Here,

we focus on obtaining sensitivity analysis quantities for the ATE, but sensitivity analysis

quantities are easily obtained for the ATT or ATC. A Bayesian approach requires one to

specify a prior distribution for (θ,ψ). In Section 2 we argued that independent Dirichlet

and Beta distributions made sense in terms of interpretability. In the remainder of this

section we discuss how the parameters governing these prior distributions can be chosen

and how one can summarize the resulting posterior distribution to make inferences about

causal quantities of interest such as the ATE under general but unobservable patterns of

confounding.

4.1 Choosing a Prior Distribution

It is worth emphasizing that, unlike Bayesian inference for models which are point identified,

the impact of the choice of the prior for ψ on the posterior distribution for ψ and functionals

of that posterior distribution will not diminish as n gets large if Z is completely unobserved.

In fact, since no new information about ψ is arriving as n gets large, the marginal posterior

for ψ will always be equal to the prior for ψ. Specifically, one should be able to justify a

particular choice of prior by an appeal to substantive background knowledge. Moreover, the

analyst should report numerous sensitivity analysis quantities in which multiple reasonable

priors are used.

Each ψxy represents the conditional probability of one of the two possible configurations

of potential outcomes among units in which we observe X = x and Y = y.3 Thus the

3See the appendix for a full elaboration of how each ψxy parameter relates to a particular set of potential
outcomes.

13



Beta(bxy, cxy) prior for ψxy can be thought of as a statement of belief that bxy − 1 of the

Cxy+ units have one potential outcome profile while cxy − 1 of the Cxy+ units have the other

possible potential outcome profile. If bxy + cxy = Cxy+ + 2 then the information in the

prior is equivalent to the information that would be in the sample data in the ideal case

in which the potential outcome patterns are observed for units with X = x and Y = y.

If bxy + cxy < Cxy+ + 2 then there is less information in the prior than this ideal situation

and if bxy + cxy > Cxy+ + 2 then the prior is adding more information than one could ever

get directly from the sample data. In the appendix, we provide a full elaboration of the

relationship between the bxy and cxy parameters and potential outcomes. Here, we provide

two useful heuristics for prior selection based on two models of treatment response and

selection. We use both of these heuristics in the analysis of the presidential visit data from

2002.

The first heuristic we consider is the possibility of a monotonic treatment effect (Manski

1997). Under monotonicity, we assume

Yi(1) ≥ Yi(0) or Yi(1) ≤ Yi(0) ∀ i = 1, · · · , n.

In words, under monotonicity we assume that outcomes for the treated are greater than

or no smaller (less than or no larger) than those in the control condition. In the context,

here, the monotone treatment response assumption implies that a presidential campaign

visit does not hurt the election chances of any candidates. If one believes that a generally

positive monotonic treatment effect is reasonable then one could set b01 � c01 and b10 � c10.

Conversely, one could set b00 � c00 and b11 � c11 to operationalize a generally negative

monotonic treatment effect. Setting the parameters on the prior distributions as follows

b01 = ∞, c01 = 0 and b10 = 0, c10 = ∞ operationalizes Manski’s version of the monotone

treatment response assumption. Manski’s version of monotone treatment response is, in

fact, a limiting case of monotonic treatment effects. We need not assume that treatment is
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uniformly positive for all units. We can vary the fraction of units helped or hurt to assess

sensitivity of the resulting estimates to the monotonicity assumption. Monotone treatment

response is a fairly weak assumption in this context. In general, it seems unlikely that

a campaign visit would hurt a candidates vote share even if the visit did not help the

candidate’s election chances.

The next heuristic we consider is that of treatment selection (Manski 1995). Under

selection, we assume that treated units are selected to maximize the outcome. This implies

that the president selects candidates for a visit based on whether the visit is likely to increase

the chances of winning that election. Formally, we write a selection assumption in the

following way:

Pr(Helped|D = 1) ≥ Pr(Hurt|D = 0)

Pr(Hurt|D = 1) ≥ Pr(Helped|D = 0)

To operationalize selection effects through the prior, one could set c11/(b11+c11) > b00/(b00+

c00). If one believes that units avoid selecting a treatment that harms them one could set

c01/(b01 + c01) > b10/(b10 + c10). Is selection a reasonable assumption in this context? The

president is unlikely to waste time campaigning for candidates that have little chance of

winning nor is the president likely to campaign much for candidates that will win easily.

Thus the president is likely to avoid never succeed and always succeed types and instead

attempt to identify candidates that will be helped. Finally, we can combine the mono-

tonicity and selection assumptions and estimates effects under the assumption of monotone

treatment selection (MTS), which should further sharpen the inference. While, we cannot

verify that either assumption holds individually or in combination, there is no reason to

think that the presence of one assumption decreases the likelihood of the other assumption.

While researchers may choose different prior values, we think these two heuristics are widely

applicable to many empirical settings.
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4.2 Posterior Inference

The posterior distributions for θ and ψ discussed in Section 2 can all be sampled using simple

independent Monte Carlo sampling. Markov chain Monte Carlo methods are unnecessary.

To produce a Monte Carlo sample of size m from the distribution with density given (up to

proportionality) by Equation 3 we can use Algorithm 4.1.

Algorithm 4.1: PosteriorSamplingUnobservedZ(C,a, b, c,m)

for j ← 1 to m

do



θ(j) ← rdirichlet(C00+ + a00, C01+ + a01, C10+ + a10, C11+ + a11)

ψ
(j)
00 ← rbeta(b00, c00)

ψ
(j)
01 ← rbeta(b01, c01)

ψ
(j)
10 ← rbeta(b10, c10)

ψ
(j)
11 ← rbeta(b11, c11)

return ({θ(j)}mj=1, {ψ
(j)
00 }mj=1, {ψ

(j)
01 }mj=1, {ψ

(j)
10 }mj=1, {ψ

(j)
11 }mj=1)

Here rdirichlet(d, e, f, g) is a function that returns a pseudo-random draw from aDirichlet(d, e, f, g)

distribution and rbeta(d, e) is a function that returns a pseudo-random draw from a Beta(d, e)

distribution.

Once a sample {θ(j),ψ(j)}mj=1 from the posterior distribution of (θ,ψ) has been drawn,

these draws are plugged into the formulas for the causal quantity of interest. A sample from

the posterior distribution of the sensitivity analysis average treatment effect ({ATE(j)
s }mj=1)

can be constructed by taking the jth sample to be

ATE(j)
s =

(
θ
(j)
00 ψ

(j)
00 + θ

(j)
01 ψ

(j)
01 + θ

(j)
11

)
−
(
θ
(j)
10 ψ

(j)
10 + θ

(j)
11 ψ

(j)
11 + θ

(j)
01

)

for j = 1, . . . ,m. Samples from the posterior distributions of other causal quantities of inter-

est follow analogously. Once we obtain a sample from the posterior distribution of interest,

we can summarize the distribution by calculating density estimates, highest posterior density
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regions (the smallest region that contains a pre-specified amount of the posterior mass), the

probability that a quantity of interest is greater than 0, etc. using the sampled parameter

values. See Jackman (2000); King et al. (2000); Gelman et al. (2003) and Gill (2007) for

discussions of how posterior samples can be summarized.

4.3 The Confounding Plot

While the subjective Bayesian approach outlined above takes beliefs about ψ as input and

returns a subjective probability distribution over causal effects, we can also reverse this

process and start with a particular prima facie post-intervention distribution and ask what

values of ψ will result in a sensitivity analysis post-intervention distribution that is within

some tolerance of the given prima facie post-intervention distribution.

Formally, for a given values of θ00, θ01, θ10 and θ11 we seek to find all values of ψ00, ψ01, ψ10

and ψ11 for which

|Prp(Y (X = 0) = 0)− Prs(Y (X = 0) = 0)| = (5)∣∣∣∣ θ00
θ00 + θ01

− (θ10(1− ψ10) + θ11(1− ψ11) + θ00)

∣∣∣∣ ≤ ε

and

|Prp(Y (X = 0) = 1)− Prs(Y (X = 0) = 1)| = (6)∣∣∣∣ θ01
θ00 + θ01

− (θ10ψ10 + θ11ψ11 + θ01)

∣∣∣∣ ≤ ε

and

|Prp(Y (X = 1) = 0)− Prs(Y (X = 1) = 0)| = (7)∣∣∣∣ θ10
θ10 + θ11

− (θ00(1− ψ00) + θ01(1− ψ01) + θ10)

∣∣∣∣ ≤ ε

17



and

|Prp(Y (X = 1) = 1)− Prs(Y (X = 1) = 1)| = (8)∣∣∣∣ θ11
θ10 + θ11

− (θ00ψ00 + θ01ψ01 + θ11)

∣∣∣∣ ≤ ε

for some small positive ε. Note that Inequalities 5 and 6 only depend on ψ10 and ψ11 while

Inequalities 7 and 8 only depend on ψ00 and ψ01. It is thus possible to depict all values of

ψ00, ψ01, ψ10 and ψ11 that satisfy Inequalities 5 - 8 with a pair of 2-dimensional plots— one

of ψ10 and ψ11 and another of ψ00 and ψ01.

Because this method does not account for sampling variability it is most appropriate

for situations in which all of the cells in the 2 × 2 table have a reasonably large number of

observations. As such, for our application, the confounding plot is of limited usefulness since

the samples sizes in the table are rather limited. We note in passing the similarity of the

plots above to the tomography plots of King (1997) that are useful for ecological inference.

Indeed, the situation under consideration in this paper in which Cxy+ are all fully observed

but the joint Cxyz counts are not observed can be thought of as a particular type of ecological

inference problem (Richardson 2004).

5 Sensitivity analysis quantities for presidential cam-

paigning

We begin the analysis with the estimation of naive treatment effect of a presidential

campaign visit in 2002. For this estimate to be a valid causal effect, we must assume

that presidential visits were as-if randomly assigned across Congressional Districts. An

assumption that is clearly implausible. The naive treatment effect estimate is 18/(18 + 3) ≈

.857)− (163/(164 + 163) ≈ .498) ≈ .36. This estimate is clearly bound away from zero with

a 95% confidence interval of 0.189 and 0.493. In contrast, the no-assumption bounds on the

treatment effect, often called Manski bounds reported in Table 3 are -0.477 and 0.522. In a
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sensitivity analysis, we hope to accomplish two goals. One goal is to produce an inference

under assumptions that are more realistic than the naive estimate of the causal effect but

also to sharpen the inference over the no assumption bounds, while using set of credible but

weak set of assumptions.

Next, we use a series of prior distributions to in an attempt to achieve these two goals.

We begin with an uninformative prior. Under the uninformative prior, we assume that the

fraction of units helped by the treatment (T = 1, Y = 0) is equal to the fraction of the units

that is helped by the treatment (T = 0, Y = 0). The estimate and 95% confidence intervals

are in Table 3. Under this assumption, the bounds on the treatment effect are now -0.348

and 0.396, with a point estimate of 0.023. Unlike in many applications of Bayesian inference,

uninformative priors make little sense, since the goal is to use substantive information to

reason about the nature of confounding.

Table 3: Estimated Treatment Effects for Presidential Visits

Naive Estimate No-Assumption Bounds Uniform Prior

0.36 0.023
[0.189, 0.493] [-0.477, 0.522] [-0.348, 0.396]

Next, we use a set of priors that assume varying levels of a monotonic treatment effect.

Here, we make assumptions about the about the fraction of units helped by the treatment.

The monotonicity assumption seems reasonable; given that we expect that a visit from

George W. Bush is unlikely to hurt the vote shares of few if any candidates. See the appendix

for a full report of the prior values used in the analysis. The first row of Table 4 contains

estimates for the effect of a presidential visit under three different levels of monotonicity.

The strongest monotonicity assumption used here is nearly equivalent to Manski’s(1997)

definition of monotone treatment response. Under the weakest monotonicity assumption,

the estimated treatment effect is 0.10, however the bounds on this estimate include zero and

thus don’t allow us to conclude that visits were effective. Strengthening the monotonicity
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assumption increases the point estimate to nearly 0.22 much closer to the naive estimate,

but again the bounds on this estimate include zero. Under the strongest monotonicity

assumption, the inference is now bound away from zero with a point estimate of 0.261. This

a sizable effect but still more than 25% smaller than the naive treatment effect estimate. It

appears that so long as we are willing to assume that the effect of the treatment was strongly

monotonic presidential visits were an effective campaign strategy. But for this to be a valid

inference, we must be willing to believe that a visit by George W. Bush did not hurt the

reelection chances of any candidates.

Table 4: Estimated Treatment Effects for Presidential Visits

Monotonicity

Weak Medium Strong

0.102 0.219 0.261
[-0.161, 0.371] [-0.025, 0.475] [0.029, 0.491]

Selection

Weak Medium Strong

0.052 0.081 0.119
[-0.213, 0.315] [-0.189, 0.346] [-0.141, 0.380]

Next, we use a set of priors that assume that candidates in the treatment group where

chosen to maximize the outcome: wins by Republican candidates. Thus we assume that

Bush chose to campaign for candidates that he thought would be most helped by a visit.

Given that presidents have many constraints on their time, the selection assumption is quite

plausible. We vary the strength of this assumption and estimate the treatment effect under

weak, medium, and strong selection assumptions. The estimates under selection are in

the second row of Table 4. The selection assumption improves the inference over the no-

assumption bounds but not enough to make the inference informative. Under weak selection,

the point estimate is consistent with only a small treatment effect at 0.05, and the bounds
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for this estimate include zero. The two stronger selection assumptions increase the point

estimates to 0.08 and 0.12 respectively. The bounds for both estimates, however, include

zero. Therefore, the selection assumption at any level is not sufficient to allow us to conclude

that presidential visits were an effective campaign tool in 2002.

Table 5: Estimated Treatment Effects for Presidential Visits

Monotonicity

Weak Medium Strong

Weak 0.131 0.247 0.289
[-0.029, 0.288] [0.111, 0.38] [0.182, 0.398]

Selection Medium 0.161 0.276 0.310
[0.005, 0.314] [0.139, 0.407] [0.208, 0.428]

Strong 0.199 0.315 0.361
[0.043, 0.348] [0.181, 0.440] [0.251, 0.459]

Finally, we use priors that assume both selection and monotonicity of varying levels. If

we again vary each assumption at three levels, that creates nine different prior combinations.

Table 5 contains the nine different estimates of the treatment effect along with the associated

95% credible intervals. The combination of the monotonicity and selection assumptions is

sufficient to result in informative inferences in five out of the six combinations. Only under

if treatment response is weakly monotonic and selection is weak does the credible interval

contain zero. Under the other five combinations the treatment effect varies from 0.161

to 0.361, which matches the naive estimate of the treatment effect. Second, we see that

magnitude of the treatment effect is mostly responsive to the monotonicity assumption. An

increase in the level of selection increases the treatment effect point estimate by around 0.03

across all levels of monotonicity. We see the largest increase in the point estimate as we

move from weak to a medium level of monotonicity.

What conclusion should we draw about the effectiveness of presidential campaign visits?
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Our conclusions here must be evaluated against the plausibility of the assumptions. The

selection assumption is the most likely of the two assumptions to hold. There is every reason

to believe that presidents’ select which candidates to campaign for based some hope of being

effective. It is unlikely that Presidents would spend much time campaigning for candidates

that have little chance of winning. As such, in this context the selection assumption is the

most credible, but it also does not have much power. Based on the selection assumption

alone we cannot rule out that the average treatment effect is zero.

If we believe that treatment response is monotone, however, there does appear to be

a treatment effect. However, with only the monotonicity assumption, treatment is only

effective if we believe that none of the candidates election chances were hurt by a presidential

visit. This is probably implausible. However, if combine these two assumptions, however, the

inference is informative. The most plausible combination of assumption is that of treatment

responses that are moderately monotonic with medium to strong levels of selection. While

selection probably holds, assuming that no candidates were hurt by visit is less plausible.

Under such a set of assumptions, this would imply that the treatment effect is between 0.161

and 0.315. This implies that while presidential visits were effective, they were, however, less

effective than one would find if we assume the visits were randomly assigned.

We can further explore the role of assumption using a confounding plot. In a confounding

plot, we can infer what set of assumptions would produce an inference as found under the

naive estimate of the treatment effect. In a confounding plot, we observe what fraction of

units would be needed in each cell to produce the naive estimate of the treatment effect

within some specified tolerance level for this data.

Figure 1 contains the confounding plot of the 2002 presidential visit data. The confound-

ing plot contains the range of fractions necessary within each cell of Table 1 to produce the

treatment effect estimate within 0.025 of the naive estimate in Table 3. I focus on the right

hand plot in the Figure. In particular the right hand x-axis contains the range of what frac-

tion of units in that cell had to be helped by a visit to produce an estimate near the naive
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Figure 1: Confounding Plot for Treatment Effect of Presidential Campaign Visit, 2002

treatment estimate. Here we see that the fraction of helped individuals in the condition

Ti = 1, Yi = 1 must be quite high or above 0.80, while the fraction never succeed candidates

must be quite high in condition Ti = 0, Yi = 0. This highlights the importance of the mono-

tonicity assumption in the earlier analyses. If the fraction of helped candidates is quite large

then the monotonicity assumption holds, and it was only under strong monotonicity that we

observed treatment effect estimates that were large and bounded away from zero. Thus this

underscores the role of the monotonicity assumption in the analysis.

6 Conclusion

In this article we have illustrated how to conduct a form of sensitivity analysis under general

patterns of unobserved confounding. In many social science applications interventions cannot

be randomized, and the assumption of no confounding is is implausible. In our application,

there is little reason to think we observe all the necessary covariates that would make con-

gressional districts visited by the president comparable to the congressional districts that do
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not receive a presidential campaign visit. The development of methods of sensitivity analyses

for situations in which unmeasured confounding is present, as is done in this paper, serves to

shift empirical social science research away from the all too typical enterprise of defending

indefensible causal assumptions to the practice of honestly stating the range of assumptions

that are consistent with a particular type of causal effect. Using Bayesian methods, analysts

can present a range of estimates under different patterns of confounding. In the analysis

presented, here, we find that under a monotonicity assumption it appears that presidential

visit aided candidates, while assumptions about treatment selection did little to alter the

inference about the presidential visit treatment effect.
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Appendices

A Prior Selection and Patterns of Confounding

Here we fully elaborate how various prior values govern different patterns of potential out-

comes under general confounding. Table 6 provides an overview of the various parameters

in the model. It is by placing prior distributions on the ψ parameters that we use subjective

knowledge to elicit possible causal patterns.

Parameter Probability Interpretation
θxy Pr(Xi = x, Yi = y) Probability Xi is equal to x and Yi is equal to y

ψ00 Pr(Zi = 1|Xi = 0, Yi = 0) Probability i would be helped by treatment
given i not treated and i failed

1− ψ00 Pr(Zi = 0|Xi = 0, Yi = 0) Probability i would never succeed
given i not treated and i failed

ψ01 Pr(Zi = 3|Xi = 0, Yi = 1) Probability i would always succeed
given i not treated and i succeeded

1− ψ01 Pr(Zi = 2|Xi = 0, Yi = 1) Probability i would be hurt by treatment
given i not treated and i succeeded

ψ10 Pr(Zi = 2|Xi = 1, Yi = 0) Probability i was hurt by treatment
given i treated and i failed

1− ψ10 Pr(Zi = 0|Xi = 1, Yi = 0) Probability i would never succeed
given i treated and i failed

ψ11 Pr(Zi = 3|Xi = 1, Yi = 1) Probability i would always succeed
given i treated and i succeeded

1− ψ11 Pr(Zi = 1|Xi = 1, Yi = 1) Probability i was helped by treatment
given i treated and i succeeded

Table 6: Interpretation of Parameters in the Model for (X,Y,Z). The i indices denote a
randomly selected unit.

Begin with the situation in which Xi = 0 and Yi = 0. Here two potential outcome profiles

are possible: Zi = 0 (never succeed) and Zi = 1 (helped). ψ00 is the conditional probability

that Zi = 1 (i would be helped by treatment) given Xi = 0 and Yi = 0, while 1 − ψ00

is obviously the conditional probability that Zi = 0 (i would never succeed) given Xi = 0

and Yi = 0. b00 is the number of pseudo Z = 1 (helped) observations + 1 and c00 is the
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number of pseudo Z = 0 (never succeed) observations + 1. If our background knowledge

suggests that units for which we observe X = 0 and Y = 0 are unlikely to respond to

treatment we would set c00 > b00. This implies that Pr(Zi = never succeed |Xi = 0, Yi =

0) > Pr(Zi = helped |Xi = 0, Yi = 0). On the other hand, if we believe that these units

are more likely than not to respond to treatment we would set b00 > c00. This would imply

Pr(Zi = helped |Xi = 0, Yi = 0) > Pr(Zi = never succeed |Xi = 0, Yi = 0). The absolute

magnitude of b00 and c00 determines how sure we are of the potential outcome distribution

within the X = 0, Y = 0 group.

Next consider the situation in which Xi = 0 and Yi = 1. Again, two potential outcome

profiles are possible: Zi = 2 (hurt) and Zi = 3 (always succeed). ψ01 is the conditional

probability that Zi = 3 (i would always succeed) given Xi = 0 and Yi = 1, while 1 − ψ01

is the conditional probability that Zi = 2 (i would be hurt by treatment) given Xi = 0 and

Yi = 1. b01 is the number of pseudo Z = 3 (always succeed) observations + 1 and c01 is the

number of pseudo Z = 2 (hurt) observations + 1. If our background knowledge suggests that

units for which we observe X = 0 and Y = 1 are unlikely to respond to treatment we would

set b01 > c01. On the other hand, if we believe that these units are more likely than not to

respond (negatively) to treatment we would set c01 > b01. Again, the absolute magnitude

of b01 and c01 determines how sure we are of the potential outcome distribution within the

X = 0, Y = 1 group.

Within the Xi = 1 and Yi = 0 group the two potential outcome profiles are Zi = 0 (never

succeed) and Zi = 2 (hurt) . ψ10 is the conditional probability of randomly selecting a unit

for which Zi = 2 (i is hurt by treatment) from the Xi = 1 and Yi = 0 group. b10 is the

number of pseudo Z = 2 (hurt) observations + 1 and c10 is the number of pseudo Z = 0

(never succeed) observations + 1. Setting b10 > c10 would be consistent with a prior belief

that more subjects tend to respond negatively to treatment within this group, while setting

c10 > b10 would be consistent with a belief that treatment is more likely than not to have no

effect on units within this group.
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Finally, within the Xi = 1 and Yi = 1 group we see that the two potential outcome

profiles are Zi = 1 (helped) and Zi = 3 (always succeed). ψ11 is the conditional probability

of seeing a Zi = 3 (always succeed) observation within this group. b11 is the number of pseudo

Z = 3 (always succeed) observations + 1 and c11 is the number of pseudo Z = 1 (helped)

observations + 1. If one thinks that units within this group are, on average, likely to respond

positively to treatment one would set c11 > b11. If non-responsiveness is hypothesized one

would set b11 > c11.

B Prior Selection in the Application

The treatment effect estimates reported required specification of the prior distributions for

the ψ parameters which govern the mixing fractions due to an unobserved confounder. Ta-

ble 7 contains the values used for the priors associated with the various assumptions used in

the analysis. One key question, of course, is how did we select these particular values and

would the conclusions drawn in the analysis change if different values were used? For the

monotonicity assumption, this is relatively easy. First, a stronger monotonicity assumption

is not possible since the difference in the beta distribution parameters for ψ01 and ψ10 cannot

be any greater than those used. The sampling process for the posterior estimates will not

converge with a larger spread on the beta distributions. At the other end for monotonicity

to hold, there inequalities outlined in the paper must hold. A difference of five points in the

beta distribution parameters is the smallest spread where the bounds include zero. We then

selected prior values roughly half way between these two prior specifications.

For the selection priors, the estimates were largely invariant to the choice of prior param-

eters. We chose an upper bound on the effect size based on which selection prior combined

with the strong monotonicity assumption produced and estimate equal to the naive treat-

ment effect. We then chose evenly spaced increments for the prior parameters that preserved

the inequality required for the selection assumption to hold. While larger spreads on these

parameters could be used, it is unrealistic to use a combination of assumptions that pro-
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duces treatment effect estimates that are larger than the naive estimate. Moreover, for

monotonicity there is a clear upper-bound to the identifying power of that assumption.

Table 7: Prior Values Used in Analysis

Monotonicity
b01 > c01 b10 < c10

Weak 10,5 5,10
Medium 10,1 10,1
Strong 10, 0.02 0.02, 10

Selection
b00 > c00 b11 < c11

Weak 10, 8 8, 10
Medium 11, 7 7, 11
Strong 13, 6 13, 6
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