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Abstract

In this paper, I demonstrate how structural mean models (SMMs) can be used
to estimate quantities based on post-treatment variables. SMMs are semiparametric
models where the parameters of the model or models correspond to meaningful func-
tions of expected potential outcomes for subjects actually exposed to the treatment.
SMMs provide a flexible framework for estimating causal effects with noncompliance
even with binary outcomes. More widely used methods such as two-stage least square
impose stronger distributional assumptions on the data. Next, I show how SMMs can
be used to estimate treatment effect modification by a post-treatment variable. Often
an intermediate variable between treatment and outcome may alter the causal effect.
Effect modification of the type can be easily accommodated in the SMM framework. I
demonstrate the utility of SMMs with applications to the get-out-the-vote literature.

1 Introduction

Researchers in political science have increasingly turned to randomized experiments as a

means of drawing causal inferences about political processes. Randomized experiments are

an attractive research methodology since randomization of a treatment makes treated and

control groups equal on average in terms of all observed and unobserved characteristics.

Thus the only differences between groups should be receipt of the treatment. Moreover, since

allocation of the treatment is controlled by the analyst, experiments can also guarantee that

the treatment is temporally prior to the outcome. This avoids the bias that can result from

conditioning on post-treatment variables (Rosenbaum 1984).
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While randomized experiments can often avoid the complications that arise from con-

ditioning on post-treatment variables, in many cases utilizing post-treatment variables can

reveal important information. For example, in experiments where subjects may fail to com-

ply with assigned treatment status, conditioning on post-treatment variables is necessary to

learn about the treatment effect for those subjects that comply (Angrist, Imbens and Rubin

1996). In another example, information about causal mechanisms is revealed through the

use of post-treatment variables (Imai et al. 2011).

In this article, we explore strategies for post-treatment variables in randomized experi-

ments. Here, we use the framework of structural mean models to both articulate assumptions

and develop estimable statistical models. Structural mean models (SMMs) were developed

as a framework for the analysis randomized trials with non-compliance (Robins 1989, 1994).1

SMMs are a class of semiparametric models where the parameters of the model or models

correspond to functions of expected potential outcomes for subjects actually exposed to the

treatment. The semiparametric structure of these models allow analysts to use statistical

techniques that impose weak constraints on the data.

In this article, we highlight two applications of SMMs. Building on the literature in

biostatistics, we show how SMMs can be applied to randomized trials with noncompliance

with a specific focus on contexts where the outcome is measured with a binary variable.

While the instrumental variables (IV) is well-understood as supplying statistical framework

for analyzing experiments with noncompliance (Sovey and Green 2011; Gerber and Green

2012), what is less well understood is that use of IV with binary outcomes require additional

assumptions for estimation of nonsaturated models. We start with a summary of the large

number of strategies that have been proposed for IV with binary outcomes. Here, we carefully

delineate the additional assumptions that are required for each method. We, then, provide

details about generalized structural mean models for binary data. SMMs for binary data rely

1Structural mean models are special cases of structural nested mean models. The basic structure of the
two models is the same, but structural nested mean models refer to time-varying treatments while structural
mean models refer to ordinary single shot treatments.
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on weak assumptions that are often justified by design and avoid the stronger assumptions

required for the methods that are most commonly used.

Next, we outline how SMMs can be used to estimate effect modification by a post-

treatment variable. The statistical analysis of an experiment entails estimation of treatment

effects. Often there is heterogeneity in these treatment effects. Such treatment heterogene-

ity is often referred to as effect modification. Treatment effect modification occurs when

treatment effects differ across strata of pretreatment variables. For example, a treatment

effect may be larger among women than men. Effect modification may also occur when an

intermediate variable–one measured after treatment–alters the treatment effect on the final

outcome. Such post-treatment effect modification, may reveal insights into both the patterns

of effects in an experiment, but might also be useful in the design of future interventions.

SMMs can be used to semiparametrically estimate such patterns of effect modification.

Structure of the Article. We begin with an introduction to structural mean models.

While these models are widely used in biomedical applications, they are rare in the social

sciences. In particular, we highlight the semi-parametric structure of these models. Next, we

review methods of estimation for experiments with noncompliance and a binary outcome.

We compare and contrast the assumptions needed for estimation across several methods

including SMMs. We then provide a re-analysis of a set of field experiments from Green,

Gerber and Nickerson (2003). Next, we show how SMMs can be used to estimate effect

modification by a post-treatment variable. After discussing the assumptions needed for

identification, we then apply SMMs to data from field experiments on habitual voting. We

demonstrate how SMMs can shed light on whether voting in one election heightens the effect

of an intervention design to increase turnout.
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2 Structural Mean Models

2.1 Notation

We begin by defining the potential outcome or counterfactual notation to be used throughout

the article. We denote Y , R, Z to represent the following observed quantities: Z is a

randomization assignment indicator with Z = 1 denoting assignment to treatment and

Z = 0 control. Later, we refer to Z as an instrument. We let R be a second indicator which

records whether a unit is actually exposed to a treatment. When subjects fully comply with

treatment assignment R = Z, but R 6= Z if some subjects do not comply. For the moment,

Y is a continuous outcome measure. For each of these observed quantities, we assume there

are units i for (i = 1, . . . , n). Hereafter, we omit subscripts for i and assume these are

individual level quantities.

We define potential outcomes in the usual way following the Neyman-Rubin causal model

(Holland 1986). Here, Y (r, z) is the potential outcome if Z is set to z and R is set to r.

We also define a second potential outcome as R(z), which is the potential exposure status

if Z is fixed at z. SMMs are designed to estimate effects of actual exposure to treatment as

represented by R as opposed to the effect of assignment to treatment represented by Z. The

expected contrast

E(Y − Y (0, 0)|R)

defines the average causal effect of R. Notice that the contrast here is between the observed

outcome Y and Y (0, 0), the treatment free potential outcome. In the SMM framework,

the causal contrasts are often defined in terms of Y (0, 0) the potential outcome that is

treatment free. The treatment free potential outcome becomes particularly relevant when

subjects select whether R = 1 or not.

To identify this causal effect, in the SMM framework, the following set of assumptions
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must hold. First, each unit’s potential outcomes must be mutually independent. This is often

referred to as the stable unit treatment value assumption or SUTVA. Second, the effect of Z

on the outcome must come only through R or Y (r, z) = Y (r) (Angrist, Imbens and Rubin

1996). This assumption is commonly referred to as the ‘exclusion restriction.’ Since we

assume that the exclusion restriction holds we denote the potential treatment outcomes as

Y (0) = Y (0, 1) = Y (0, 0). Two additional assumptions are also required for identification.

These assumptions, however, unlike SUTVA and the exclusion restriction are justified by the

design in randomized trials. First, Z must be independent of both potential outcomes R(z)

and Y (r, z). If an analyst uses random mechanism to assign values of Z, this assumption

should hold in expectation. Thus the design of the experiment make this assumption true

and verifiable. Next, we assume that units in the control group cannot access treatment

and only receive the control so that Pr(R = 0|Z = 0) = 1. Such a restriction again can

be justified by the experiment design and is referred to as a ‘no-contamination’ restriction

(Cuzick et al. 2007).

In experimental designs where the no-contamination restriction is not credible, SMMs

require an additional assumption. SMMs are also identified when the no effect modification

(NEM) assumption holds. In words, the NEM assumption constrains the causal effects

among the treated to be equal for those randomized to treatment and those randomized to

control (Hernán and Robins 2006). The exact form of the NEM assumption depends on

the SMM. Below, I formally define the NEM for one common SMM. The NEM assumption

is analogous but not identical to the more familiar assumption of monotonic selection of

exposure to treatment by the units (Imbens and Angrist 1994; Angrist, Imbens and Rubin

1996). For some types of SMMs, identification holds under the monotonicity assumption.

Next, I describe the additive SMM, the simplest of SMMs.
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2.2 Identification in Additive Structural Mean Models

SMMs are like generalized linear models in that they are formulated for specific link functions.

For example, the additive SMM is for situations where the identity link is judged appropriate,

and the multiplicative SMM is for situations with log links. All SMMs, however, rely on

a basic counterfactual comparison between the observed outcome and the treatment-free

potential outcome Y (0). For any SMM, this contrast takes the following form:

E(Y |R,Z)− E{Y (0)|R,Z} = ηs(R)φ

As above, the causal contrast is between the observed outcome and the treatment free

potential outcome. Here, ηs(R)φ denotes a structural model with an unspecified functional

form. The model is referred to as a structural model since the model refers to counterfactual

quantities and causal contrasts instead of to observed associations.2 Association models

describe correlations that can be estimated from observed data, unlike a structural model

that describes counterfactual quantities that cannot be observed without a set of assumptions

for identification. Later, we will need to introduce an association model for one particular

type of SMM.

For the additive SMM, we place the following structure on ηs(R)φ

E(Y |R,Z)− E{Y (0)|R,Z} = (φ0 + φ1Z)R (1)

The parameters of the additive model corresponds to specific counterfactual comparisons.

The parameter φ0 = E{Y (1) − Y (0)|R = 1, Z = 0}, and φ0 + φ1 = E{Y (1) − Y (0)|R =

1, Z = 1}. Thus the first parameter is the average causal effect among those who choose

2The term “structural model” has a number of highly specific definitions within economics. See Heckman
and Vytlacil (2007) for a discussion of the definitions of structural models in economics. The definition of a
structural model I use here comes from a strand of research that focuses on counterfactuals and formulates
the definition of a structural model in terms of unobservable counterfactuals (Pearl 1995; Robins, Hernan
and Brumback 2000). The counterfactual definition of structural models is quite different from some of the
definitions typically used in economics.

6



treatment but are assigned to control, and the sum of the first and second parameter is

the average causal effect among those who are assigned to and choose treatment. Under

the no-contamination restriction, by design, {R = 1, Z = 0} is a measure zero event and

{R = 1} = {R = 1, Z = 1} which implies the following restriction on the structural model:

φ0 + φ1 = φ = E{Y (1)− Y (0)|R = 1}.

When Z is randomized, E{Y (0)|Z = 0} is alway non-parametrically identified from the data

using E(Y |Z = 0). With noncompliance, it is less obvious that E{Y (0)|Z = 1} is identified

from observable quantities in the data. Under SMMs, we use the following expansion to

derive which observable quantities correspond to this counterfactual:

E{Y (0)|Z = 1} = E{Y (0)|R = 1, Z = 1}E{R|Z = 1}

+ E{Y (0)|R = 0, Z = 1}E{1−R|Z = 1}

If Z is randomized the following is true:

E{Y (0)|Z = 1} = E{Y (0)|Z = 0}

This implies that we can write the key counterfactual quantity in terms of observed quantities

E{Y (0)|R = 1, Z = 1} =
E(Y |Z = 0)− E{(1−R)Y |Z = 1}

E(R|Z = 1)

This implies that identification holds for the following parameter:

φ = E{Y (1)− Y (0)|R = 1}

or we can re-express this in terms of the contrast between observed outcomes and the treat-
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ment free potential outcome with the following model

φ = E(Y − Y (0)|R,Z = 1)

This model is said to be saturated since it imposes no a prior restrictions on the functional

form of the estimate. In other words, since it is nonparametric. In this model, φ represents

the expected change in outcome for subjects who were exposed to R = 1 if they had had

their exposure set to R = 0.

If the no-contamination assumption does not hold, we must assume that NEM holds.

Assuming NEM, identification proceeds in a different manner. Again under randomization

E{Y (0)|Z = 1} = E{Y (0)|Z = 0}, which can be rewritten in conjunction with (1) as

E{Y − (φ0 + φ1)R|Z = 1} = E(Y − φ0R|Z = 0)

Under the NEM assumption, this corresponds to constraining φ1 = 0 which implies

φ0 = E{Y (1)− Y (0)|R = 1}

2.3 Estimation in Additive Structural Mean Models

For the additive SMM, estimation proceeds via G-estimation (Robins 1994). Under G-

estimation, when the structural model is saturated, the estimator is nonparametric. When

the structural model is not saturated, G-estimation is semiparametric which places weak

functional form constraints on the model. To weaken functional form assumptions, G-

estimation only estimates the parameter for the treatment effect parameter, while all other

parameters in the model have a nonparametric form. G-estimation is usually described in

the context of estimators for causal effects with inverse probability weighting. The principle

of G-estimation, however, is quite general.

Under G-estimation, the consistent estimate for the treatment effect is the value of φ
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that yields no mean difference between the observed and treatment free potential outcome.

For example, take the intention to treat (ITT) estimator, which is the effect of treatment

assignment as opposed to compliance. The standard estimator for the ITT is

E(Y |Z = 1)− E(Y |Z = 0)

Under G-estimation, we write our estimator for the ITT as

Y (0) = Y − φZ

In a randomized experiment, we observe Y (0), treatment free potential outcomes, when

Z = 0, if so the consistent estimator for φ is the value of φ that makes this equality hold.3

For a saturated additive SMM, the nonparametric G-estimator is

φ̂0 =
E(Y |Z = 1)− E(Y |Z = 0)

E(R|Z = 1)− E(R|Z = 0)

This estimator, of course, corresponds to the usual Wald estimator (Angrist, Imbens and

Rubin 1996). Moreover, this implies that the additive SMM estimates the same complier

average causal effect identified under instrumental variables. In sum, additive SMMs are

equivalent to instrumental variables (IV) methods

To demonstrate the semiparametric structure of SMMs, we define x as a pretreatment

covariate. If we wished to included x, we could write the structural model as:

E(Y − Y (0)|R,Z = 1) = ηs(R, x)φ = φ0 + φ1R + φ2Rx

This model allows for covariate-exposure interactions in the structural model. Here, φ2

defines the change in the average effect of the exposure R for a unit increase in x. Under a

fully parametric approach, we would estimate all the parameters in the model using the linear

3We have to assume that additive rank preservation holds as well
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functional form above. SMMs are semiparametric since both φ0 and φ2 are left unspecified.

SMMs are much like the Cox model for survival data. In the Cox model, the baseline

hazard is left unspecified. In SMMs all parameters other than the treatment effect are left

unspecified. Thus the parameters φ0 and φ2 are left as infinite-dimensional parameters with

an unspecified functional form. Thus SMMs make fewer functional form assumptions and

are less prone to bias from model misspecification (Robins 1992, 1994). In fact, much of the

strength of SMMs stems from the fact that they provide a semiparametric framework for

IV estimation. These semiparametric models are asymptotically consistent (Robins 1992)

which may be a concern in design with noncompliance but small numbers of units. When

samples sizes are small, estimates from a saturated model should accompany estimates from

non-saturated models. To summarize, for saturated models, the additive SMM corresponds

to the standard nonparametric Wald estimator, but for unsaturated models, SMMs rely on

semiparametric estimation. We now turn to the case where Y ∈ {0, 1}.

3 IV with Binary Outcomes

Binary outcome measures are common in the social sciences. While the application of IV

methods in any setting requires the assumptions outlined above, when the outcome is bi-

nary many methods of estimation impose additional assumptions. The exact form of these

assumptions vary from estimator to estimator (Clarke and Windmeijer 2012). When the

outcome is binary, analysts can use three different approaches (1) bounds (nonparametric

but not point identified), (2) fully parametric, (3) semiparametric, and (4) nonparamet-

ric but point identified. We do not discuss the bounds approach which uses the weakest

assumptions. See Clarke and Windmeijer (2012) for an overview of bounds approaches.

3.1 Current Approaches

We begin with a brief overview of the wide variety of methods available to apply IV to

binary outcomes. As is often the case, there is a tension between ease of use and the

strength of the assumptions need for estimability. Methods with strong assumptions tend to
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be easy to use, while approaches with weaker assumptions are less easy to use. There is one

exception to this rule when R and S are binary. When this is true, one can apply the Wald

estimator, which is nonparametric. When analysts include pre-treatment covariates or have

continuous exposures, the simplest method is to apply the usual two-stage least squares

(2SLS) estimator to the binary outcome. Often, 2SLS will provide reasonable answers,

but it imposes strong assumptions on probability bounds and constant effects of exposure

to the randomized treatment (Imbens 2001). One alternative is to apply Heckman-style

models either with a two step estimation process or with maximum likelihood (Heckman

1979). Heckman-style models also impose very strong functional form assumptions and are

very sensitive to minor violations of distributional assumptions (Copas 1988; Little 1985).

Freedman and Sekhon (2010) also note that issues often arise in the estimation of these

models where the numerics are fragile and convergence is uncertain.

A less restrictive approach is through a variety of what we denote as “plug-in” estimators,

where the logic of 2SLS is adapted to nonlinear models. Here, developments for probit and

logit models have proceeded separately. Rivers and Vuong (1988) develop two different

plug-in methods for probit models. The first we call the plug-in prediction method, and the

second we call the plug-in residual method. Both start with a first stage model for exposure

as a function of treatment status. In each, different quantities from the first stage model are

used in the second stage model of the outcome.

We describe the plug-in prediction approach first. Here, in the first stage one fits a linear

selection model: R = α̂0+α̂1Z. Then in a second stage model, we fit Y = Φ(β̂0+β̂1R̂). In the

second stage probit model, β̂1 is an estimate of the CACE on the latent probability scale. The

plug-in residual method known as a “control-function” estimator works on a similar principle.

As before, one fits a linear selection model for R, but instead of using the fitted values for R,

we calculate the fitted residual, V̂ = R−α̂0+α̂1Z. In stage two, we fit Y = Φ(β0+β1R+β3V̂ ).

Now the estimated coefficient on R is a consistent estimator for the CACE. Nagelkerke et al.

(2000) constructed plug-in IV estimators for binary outcomes using logistic link functions in
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an similar way. As an alternative they propose fitting logistic regression models for the first

stage model. Blundell and Powell (2004) propose a semiparametic control function approach

for when R is a linear function.

While plug-in approaches are easy to implement, they rely on strong assumptions. When

the selection model is nonlinear, neither estimator is consistent (Clarke and Windmeijer

2012). In fact analytic expressions can be derived to show the bias of these estimators

(Cai, Small and Have 2011). Other studies have used simulation to show that both plug-in

approaches have higher levels of bias compared to methods with more flexible functional

forms (Cai et al. 2012; Vansteelandt et al. 2011). Moreover, both the Heckman-style models

and the plug-in methods impose additional assumptions even when the model is saturated.

As we note below, SMMs are completely nonparametric when the model is saturated.

To avoid the functional form assumptions needed for parametric approaches, two differ-

ent semiparametric estimators (besides SMMs) have been developed. Abadie and Gardeaz-

abal (2003) constructs a weighted estimator based on the ‘local average response function’

(LARF). Tan (2006) proposes a doubly robust approach based on a weighted two-stage

estimator. While both approaches are robust, neither have seen wide use in the applied

literatures. Structural mean models provide one additional semiparametric approach to IV

with a binary outcome.

3.2 Generalized Structural Mean Models

Extendings SMMs to the binary case is not without its challenges. Robins (1999) showed

that standard methods of G-estimation cannot be applied to binary outcomes when compli-

ance status is nonignorable. (Vansteelandt and Goetghebeur 2003) found a solution using

what has come to be known as the double-logistic SMM. The double-logistic SMM models

differences in the probability that observed Y is 1, P (Y = 1) and the probability that the

treatment free potential outcome is 1, P (Y (0) = 1), through the following model
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logit{E[Y |R,Z = 1]} − logit{E[Y (0)|R,Z = 1]} = η′s(R)ψ0 (2)

where logit(a) = log{a/(1 − a)}. In this model, the probability of success for subjects who

chose to be exposed to the treatment (Ri = 1) versus not exposed (Ri = 0) is determined

by ψ0, depending on the functional form of η′s(R)ψ0. Here ψ0 corresponds to the probability

of success for participating versus not participating in the intervention. Estimation requires

that the analyst specify what is known as an association model which models the outcome

as function of treatment and compliance status:

{P (Y = 1)|R,Z = 1)} = ηa(Z)β

We denote this model as an association model with the subscript ‘a’ because it describes

an observed correlation in the data and is not mean to represent a causal comparison.

Specifically, the association model describes the correlation between outcome and compliance

given treatment status. As such, it is not a structural model. It is needed since Y (0) is

never observed with R except when R = 0. This implies that the conditional mean of the

potential treatment free outcome is not directly observed. When the model is saturated, the

association model has the following parameterization

Λ(β0 + β1Z + β2R + β4ZR) = ηa(Z)β

where Λ is the cumulative distribution function for the logistic distribution function, and

the parameters in the association model are fit with a logistic regression. The double-logistic

SMM estimator is the solution to the following moment condition

E[expit{β0 + β1 + (β2 + β4 − ψ0)R}Z = 1] = E[expit{β0(β2 − ψ0)R}Z = 0] (3)

where expit(·) = exp(·)/{1 + exp(·)}. The estimate for ψ0 is the value such that the av-
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erage difference between the observed outcomes in the control condition are equal to the

predicted treatment free outcomes in the treated condition. Given that both the structural

and associational models are logistic regressions, this method is often called a double-logistic

SMM.4

When the models are saturated and the no-contamination assumption holds, a nonpara-

metric estimator is available. Let py=1|r,z be the observed proportion of successes on Y given

R and Z. The nonparametric estimator for ψ0 is

ψ0 =
py=1|r=z=1

1− py=1|r=z=1

[
pr=1|z=1

py=1|r=z=0 − py=1,r=0|z=1

− 1

]
(4)

Again one advantage of the SMM framework is that with saturated models, we need not

impose additional assumptions on the data. We should note that estimates of ψ0 from (4)

are on the log-odds scale such that exp(ψ0) is an odds-ratio. One could also use the logistic

CDF to convert this quantity to the probability scale.

For unsaturated models, Vansteelandt and Goetghebeur (2003) develop a weighted Newton-

Raphson algorithm for semiparametric estimation. They prove that this method of estima-

tion is consistent when the association model is correctly specified, which will hold by design

in a randomized trial. Alternatively, Clarke, Palmer and Windmeijer (2011) demonstrate

how the double-logistic SMM can be estimated with generalized method of moments. The

model can also be parameterized with probit link functions. Note the model is semiparamet-

ric in that an estimate is produced for ψ0, all other parameters in the model have unspecified

functional forms.

The double-logistic approach is attractive since it places weak constraints on the data

(Clarke and Windmeijer 2012). A number of simulation studies have found that the double-

logistic SMM performs better than plug-in methods in terms of bias and robustness to

misspecification (Cai, Small and Have 2011; Cai et al. 2012; Vansteelandt et al. 2011). The

4One drawback to the double-logistic SMM is that the association model may be uncongenial with the
structural model which will affect convergence of the estimating algorithm (Vansteelandt and Goetghebeur
2003). This appears to be rare in practice.
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double-logistic SMM also has a local robustness property such that if either the association

model or the structural model is misspecified, the estimate for ψ0 is always consistent under

the null hypothesis ψ0 = 0. This robustness property guarantees that when the models are

misspecified estimates of ψ0 will have little bias when the true effect is close to zero. We

should note that concerns about model specification do not arise for saturated models which

occur in randomized designs where the no-contamination restriction holds. We now turn to

an empirical application to compare the double-logistic SMM to a plug in approach.

3.3 Application

One literature in political science studies methods for increasing voter turnout through the

use of randomized field experiments. This research both focuses on the effectiveness of var-

ious get-out-the-vote methods and tests social psychological theories about voters (Green,

McGrath and Aronow 2013). One entry in this literature focused on the effectiveness of

door-to-door canvassing (Green, Gerber and Nickerson 2003). In this study, the researchers

conducted six separate field experiments in the following cities: Bridgeport, Columbus, De-

troit, Minneapolis, Raleigh, and St. Paul in November 2001. In each city, voters were

randomized to either receive face-to-face contact from local staffers encouraging them to

vote or were not contacted.

The elections in the field experiment were all local elections that ranged from school board

to city council elections. As we might expect, many of the households randomized to the

treatment were not available for the face-to-face message encouraging them to vote. While

the intention-to-treat (ITT) effects are easily estimable, in this context, complier effects are

of greater interest. Importantly, the design ensures that the no-contamination restriction

holds. That is, it is impossible for control households to access the canvassing treatment.

This is important since this implies that the double-logistic SMM is identified under the

weakest set of assumptions.

In the original analysis, the analysts estimated complier effects using both 2SLS and a
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bivariate pro bit with partial observability. In all six field experiments, both turnout rates

(the outcome) and compliance with the treatment were quite low. In some cities, turnout

and compliance were lower than 15%. Skew in the binary distributions of R and Y is more

likely to lead to biased estimates under fully parametric approaches (Cai, Small and Have

2011; Cai et al. 2012). Moreover, compliance was measured with a binary covariate while the

approach of Rivers and Vuong (1988) assumes compliance status is continuous. As such, the

plug-in approach is not congenial to the data from these experiments. Here, we conduct a

basic comparison of the double-logistic SMMs and the plug-in approach of Nagelkerke et al.

(2000). We estimate the complier average causal effect for each of the six field experiments.

To ensure the comparability of the estimates, we estimate the compiler average causal effect

on the odds scale. In sum, we compare estimates of exp(ψ0) from a plug-in prediction

estimator and the double-logistic SMM. In the biomedical statistics literature, this quantity

is often referred to as the causal odds-ratio. For the plug-in method, we use predictor

substitution instead of residual substitution.

Table 1 contains estimates of the causal odds ratio and associated 95% confidence intervals

for each of the six cities. We estimate saturated models, which implies that we do not include

any pretreatment covariates. The specification for each approach is based on the outcome,

compliance status, and treatment assignment status.5 We also include in the table the

percentage of subjects in the experiment that that voted irrespective of treatment status,

and the percentage of compliers. In general, we find that the plug-in method over estimates

the causal odds ratio. In three cases, however, the discrepancy is minimal. In two cities,

Bridgeport and Columbus the differences between the plug-in and double logistic estimates

is rather large. For the Bridgeport experiment, the estimate of the causal odds ratio is

4.35 with the plug-in method, while it is 3.17 for the SMM. In the Columbus experiment,

the plug-in method estimate is 3.56 while it is 2.62 for the SMM. We should note that in

both cases the confidence intervals do overlap. The discrepancy appears to be driven by

5The original analysis also included dummy variables for each set of staffers that went door-to-door.
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the distribution of the outcome variable: when the turnout proportion is small, the bias in

the estimate appears to increase. In general, SMMs provide a robust method for estimating

compliance effects when outcomes are binary. Next, we explore a second extension of SMMs.

Table 1: Causal Odds Ratio for the in Complier Effect in Six GOTV Field Experiments

Plug-in Method
Bridgeport Columbus Detroit Raleigh St. Paul Minneapolis

Odds Ratio 4.35 3.56 1.49 0.91 1.78 1.72
95% C.I. [1.59, 12.1] [0.48, 26.09] [0.97, 2.01] [0.67, 1.21] [1.06, 3.01] [0.69, 4.27]

Double Logistic SMM
Bridgeport Columbus Detroit Raleigh St. Paul Minneapolis

Odds Ratio 3.17 2.62 1.41 0.91 1.75 1.67
95% C.I. [1.08, 9.29] [0.31, 22.17] [0.96, 2.05] [0.70, 1.19] [1.03, 2.96] [0.64, 4.29]

Percent Votinga 12.7 9.0 44.6 29.1 39.5 25.9
Percent Compliant 14.2 6.5 15.3 16.4 16.5 9.2

Note: The plug-in method we use is that of predictor substitution. The prediction from a first stage model
of compliance is substituted into a second stage logistic regression model of the outcome. aThis refers to the
percentage of people that voted in the entire sample irrespective of treatment status.

4 Effect Modification by Post-Treatment Variables

Thus far the chief utility of SMMs has been to provide an alternative approach to IV esti-

mation when outcomes are binary. In the application, the double-logistic SMMs appeared

to be particularly useful when the distribution of a binary outcome was heavily skewed. In

this section, we explore an extension of SMMs. Often analysts seek to understand whether

treatment effect heterogeneity occurs. Here, treatment effects are thought to differ across

the level of a pretreatment covariate. In a medical trial, for example, the effects of a ran-

domly administered drug may differ in its effectiveness depending on the sex of the subject.

Effect modification may also occur across levels of a posttreament covariate. Such effect

modification arises in designs with longitudinal data collection. In these designs, after the

randomized intervention, there are multiple waves of data collection. We might suspect that
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the effect of treatment might vary across levels of a covariate collected at an intermediate

wave. Such longitudinal effect modification can be accommodated in the SMM framework

while retaining a more flexible functional form through semiparametric estimation (Stephens,

Keele and Joffe 2013). While additional assumptions are necessary for identification, SMMs

of this type can provide either a sensitivity analysis for some experimental designs or be used

to develop hypotheses for future interventions.

4.1 The Causal Model

First, we redefine the causal model in Equation 2 in the following way. For the moment,

we assume that R = Z such that there is full compliance with assigned treatment status.

Relaxing this assumption does little to alter the nature of the causal model. First, I define

S as potential post-treatment effect modifiers which are a set of intermediate covariates

observed after treatment but prior to the outcome, also possibly multivariate. I also define

x as a set of covariates measured before treatment. The causal contrast is now

logit(E[Y |S, Z = 1,x])− logit(E[Y (0)|S, Z = 1,x])

= η′s(S, R,x)ψ = f1(Z)ψ1 + f2(Z,S)ψ2 (5)

where f1(·) and f2(·) are arbitary known functions up to an unknown p-dimensional param-

eter ψ0 = (ψ01, ψ02), where p = dim(ψ1) + dim(ψ2). One model for a binary treatment Z

and a single intermediate variable S might assume the following forms for f1(·) and f2(·)

logit(P (Y = 1|S,Z = 1,x))− logit(P (Y (0) = 1|S,Z = 1,x)) = ψ1Z + ψ2ZS (6)

Interpretation of the quantities from this causal model is straightforward. The second pa-

rameter ψ2 quantifies the differential in the effect of intervention Z at varying levels of S.

When ψ2 = 0, homogeneous causal effects are estimated across values of S.
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We contrast this causal model with a more familiar one. First we alter Equation 2

logit{E[Y |x, Z = 1]} − logit{E[Y (0)|x, Z = 1]} = η′s(Z,x, Zx)ψ. (7)

Under this parameterization η′s(Z,x, Zx)ψ = (α0 + α1x + ψ0Z + ψ1Zx) which allows for

the possibility that the causal odds ratio varies over levels of x. Such a parameterization

allows for effect modification by pretreatment covariates as opposed to the model in (6)

which allows for effect modification by post-treatment covariates. The SMM in (6) can also

easily accommodate when R 6= Z. When this is true, the model requires the usual IV

assumptions, but the model in (6) now allows for the possibility that the causal odds ratio

for compliers varies over levels of S. See Stephens, Keele and Joffe (2013) for details on the

estimation of SMMs with post-treatment effect modification. Estimation is often aided by a

rich set of pretreatment covariates. The chief difference between models (7) and (6) is that

treatment might affect S which then alters the treatment on later outcomes. Given that S

is post-treatment assumptions for identification are altered from the usual SMM.

4.2 Identifiability

Identification under causal model (6) does require additional assumptions; in fact these mod-

els cannot be nonparametrically identified. Here, I discuss the conditions for identifiability.

See for Vansteelandt and Goetghebeur (2004) for a related theorem and proof. For the mo-

ment, we ignore the binary nature of Yi and the logistic link. Consider the following three

structural mean models

E(Yi − Yi,0|S,Z = 1,x) = ψ1Z + ψ2ZS (8)

E(Yi − Yi,0|S,Z = 1,x) = ψ1Z + ψ2Zx

E(Yi − Yi,0|S,Z = 1,x) = ψ1Z + ψ2ZS + ψ3Zx

This system of equation is not identified since there is not enough information to disentangle

19



the effects of x and S as there are only two identifying restrictions in (5). For identification,

we must restrict one set of the multiplicative terms to be zero. To identify effect modification

by a post-treatment covariate, we must restrict the x multiplicative terms to be zero. Under

this set of modeling restrictions, identification holds. The restriction on pre-treatment effect

modification leads to approximately averaged effects. No-interaction assumptions are often

necessary for identification when conditioning on post-treatment quantities (Ten Have et al.

2007; Vansteelandt and Goetghebeur 2004; Robins and Greenland 1992; Hernán and Robins

2006).

Given that nonparametric identification is not possible, how should we interpret the re-

sults of SMMs with post-treatment effect modification? We argue that these models are

useful if carefully applied. First, the results should not be given a strong causal interpreta-

tion. It is probably unwise to for this model to be the sole form of analysis, but the model

can be useful as a sensitivity analysis in conjunction with other models. In general, SMMs of

this type might also aid the design of future interventions or be used to generate additional

hypotheses. As we demonstrate in the application, these models serve as a useful secondary

test for what is know as downstream experimental analysis. Moreover these SMMs retain

their local robustness property (Stephens, Keele and Joffe 2013), so an analyst is unlikely to

falsely conclude that a treatment is without effect.

4.3 Application

Green and Gerber (2002) introduced the concept of “downstream” experimental analysis.

In a downstream experimental analysis, researchers take advantage of the exogenous vari-

ation generated by randomized interventions to examine indirect effects from experiments.

They propose an approach based on instrumental variables for estimating the indirect ef-

fects studied in a downstream analysis. We propose that SMMs with post-treatment effect

modification can serve as useful method for the study of downstream effects.

The study of whether voting is habitual has been one fruitful application of downstream
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experimental analysis (Gerber, Green and Shachar 2003). It is thought that voting may

be habitual: once a citizen starts voting a habit forms and repeated voting is more likely.

To demonstrate the application of SMMs to post-treatment effect modification, we use data

on habitual voting. Our application is a downstream analysis of the well-known social

pressure field experiment on voter turnout (Gerber, Green and Larimer 2008). In that

study, voters were sent mail messages that told voters that voting status is a matter of public

record that could be disclosed to family, friends or neighbors. Voters that received social

pressure messages were considerably more likely to vote than those in the control condition.

Here, we use an augmented version of the original data from this experiment. Specifically,

we use data from Davenport et al. (2010) who added the turnout status from a series of

subsequent elections for those who participated in the experiment. The social pressure

experiment was fielded in August of 2006 before an August primary election in Michigan.

In the original study, Gerber, Green and Larimer (2008) estimated the effect of the social

pressure treatments on turnout in that August primary. The augmented data contains the

voting status for four later elections starting with the general election of November 2006 to

the general election of November 2008. In the analysis that follows, we restrict the outcome

to voting status in the November 2006 general election.

The simplest method for a downstream analysis of habitual voting is to calculate an ITT

estimate for outcomes other than those in the study. In the habitual voting example, we can

calculate ITT estimates for the effect of the social pressure intervention on the November

election instead of the August primary which was the original outcome of interest. It is

this strategy that is used in (Davenport et al. 2010). One alternative to the ITT method

for downstream analysis uses IV methods (Green and Gerber 2002). We introduce some

notation to outline the IV approach to downstream analysis. Z is the randomized assignment

indicator with Z = 1 denoting assignment to the social pressure treatment and Z = 0 denotes

assignment to control. We let R be a second indicator which records whether someone voted

in the August 2006 election following the field experiment. Now, Y is a binary outcome
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measure, which records whether someone voted in a downstream election, here, the November

2006 general election. In the IV approach to downstream analysis proposed by Green and

Gerber (2002), Z serves as an instrument while R becomes an intermediate outcome which

transmits the effect of the intervention to the outcome Y . The estimand is the effect of the

treatment as mediated by voting in the intermediate election.

Identification of the estimand in the IV approach to downstream analysis requires the

usual IV assumptions. First, treatment status must be ignorable and SUTVA must hold. In

this application instrument status is ignorable under the design, and there is little reason

to suspect a SUTVA violation. Moreover, the social pressure intervention had strong effects

on turnout in August 2006, so the instrument is not weak. Given that the control group

cannot access the social pressure treatment, the no-contamination assumption is justified

by the design. The key assumption in the downstream analysis is the exclusion restriction:

it must be true that the social pressure intervention in August cannot have a direct effect

on turnout in November. If we use the November 2006 election as the outcome, we have

good reason to doubt the exclusion restriction. For the exclusion restriction to be valid, we

must assume that no one remembers the social pressure intervention when deciding to vote

in the general election three months later. In one study of habitual voting, the length of

time between the treatment and downstream outcome was spaced out to a year to bolster

the exclusion restriction (Gerber, Green and Shachar 2003). That is, once a year has passed

between the initial treatment and the downstream election, it is more likely that there is no

indirect effect. Gerber and Green (2012) discuss other methods for evaluating the exclusion

restriction in this context. Estimation of the downstream effect under IV is straightforward

as the usual 2SLS estimator can be applied. Of course, given that the intermediate and

outcome variables are binary one might opt for the double-logistic SMM to avoid stronger

functional form assumptions.

To apply an SMM with post-treatment effect modification, we first redefine R, voting in

the August election, as S a postreatment effect modifier. The logic for effect modification is
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straightforward. If voting is habitual, the effect of the social pressure treatment should only

persist for those who voted in August. We specify the following conditional SMM

logit(P (Y = 1|S,Z = 1,x))− logit(P (Y (0) = 1|S,Z = 1,x)) = ψ1Z + ψ2ZS

The parameter ψ2 quantifies the differential in the effect of the social pressure intervention

Z at varying levels of S voting in August. The SMM allows the effect of the intervention in

August to be directly transmitted to the November outcome, but we expect the effect of the

intervention on voting in November to be larger among those who voted in August.

For the empirical analysis, we study two of the social pressure interventions. The one

intervention we examine disclosed voting records of everyone on the block. We term this

the “Neighbors” treatment. A second intervention disclosed voting records of everyone in

the household. We term this the “Self” treatment. In the statistical models, we compare

each of these treatments to a control group that did not receive a mailing of any kind. For

each treatment, we report three different estimates. The first is the ITT estimate of the

social pressure intervention on turnout in the November election. Second, we use IV for a

downstream analysis. We implement IV via the double-logistic SMM. Finally, we use an

SMM with post-treatment effect modification, where voting in August is allowed to modify

the effect of the treatment.6

Table 2 contains the results for both treatments across the three different identification

strategies. We report all results as odds ratios. We first review the results for the Neighbors

treatment. First, for those who received the neighbors social pressure treatment, the odds

of voting are 8% higher in the November election, and the treatment effect is statistically

significant as the 95% confidence interval is bound away from 1. If we assume that the

treatment in August has no direct on voting in November, the odds of voting are 68% percent

higher in the treated group, which is also statistically significant. Next under the SMM

specification with treatment effect modification, we stratify the treatment effect estimate

6In this model, we condition on age, sex, and voting history for the last six elections.
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Table 2: Estimating the Downstream Effects for 2006 Social Pressure Field
Experiment

Self Neighbors

Downstream ITT 1.03 1.08
[0.99, 1.06] [1.04, 1.12]

Downstream IV 1.23 1.68
[0.98, 1.53] [1.41, 1.99]

Effect
Modification

Didn’t Vote Voted in Didn’t Vote Voted in
in August August in August August

0.97 1.18 1.02 1.25
[0.89, 1.06] [1.01, 1.39] [0.94, 1.12] [1.08, 1.47]

Note: All point estimates are odds ratios with associated 95% confidence in-
terval. Downstream IV estimate via double-logistic SMM. For Downstream
IV estimate, voting in August primary is the intermediate post-treatment out-
come. Voting in the August primary serves as the effect modifier for estimates
in last row of the table. Treatment was in effect before August 2006 primary.
Downstream outcome is voting in November 2006 general election. Each con-
trast is between one social pressure condition and the control condition that
did not receive any mail in the field experiment.
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by voting status in August. For those who failed to vote in the August primary, the social

pressure intervention increased the odds of voting by a mere 2% and the 95% confidence

interval now brackets 1. For voters that did vote in August, we observe that treatment

raises the odds of voting in November by 25% and the estimate is statistically significant.

One advantage of the SMM effect modification approach in this context is that it provides us

with an estimand that exactly matches the theory of habitual voting. That is, we estimate

a treatment effect among those who voted at least once and may have picked up the voting

habit. We observe the same pattern with the self treatment but with smaller effects. Here,

in the ITT analysis, the treatment raises the odds of voting by 3%, but in the IV analysis,

the odds of voting among the treated are 23% higher. Both estimates, however, are not

statistically significant. When we allow treatment effect modification, we do find that the

odds of voting in November are 18% higher for those treated in August, and the estimate is

just statistically significant.

The congruent findings across the IV approach and effect modification approach suggest

a clear empirical pattern about habitual voting. While the IV approach relies on a suspect

exclusion restriction and effect modification requires restricting the form of treatment inter-

actions, taken together consistent results provide better evidence for the expected empirical

pattern. We think the strategy, here, is successful in that for both IV and SMM with effect

modification identification is not entirely justified by the experimental design. Each ap-

proach requires very different assumptions for identification. Agreement across the methods

then forms a sensitivity analysis. A sensitivity analysis based on finding congruent results

across different identification assumptions.

4.4 Conclusion

In many experiments with simple designs, statistical analysis often need not venture be-

yond a difference of means. But in other cases more sophisticated forms of analysis are

required. In particular complications always arise when analyst condition on quantities
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that are post-treatment. In these situations, identification of causal effects always relies on

strong untestable assumptions. One cautious approach would be to only and always report

intention-to-treat analyses where identification is rarely questionable. While such caution

may be admirable, it is often worth extracting additional information from experimental

interventions. So long as such analyses are reported with ITT estimates, readers can clearly

distinguish which estimates rely on which assumptions. In general, the enemy is not assump-

tions but the use of assumptions without transparency.

Here, we have introduced structural mean models and focused on two instances where

they can more usefully extract information from randomization than more commonly used

tools. SMMs provide a general framework for estimating treatment effects with noncompli-

ance. The SMM approach provides a nonparametric estimator when models are saturated,

and SMMs allow for semiparametric estimation of causal quantities when models are not

saturated. While simple experiments can often rely on fully nonparametric forms of analysis

that is less true in analyses that involve conditioning on post-treatment quantities. The

semiparametric form of SMMs imposes fewer functional form assumptions on the data than

more popular, conventional statistical models such regression with two stage least squares.

The advantages of SMMs are more apparent when the outcome is a binary measure. While

a wide variety of estimation methods have been proposed for IV methods with binary out-

comes, most require fairly strong distribution assumptions, which is not true of SMMs. In

the empirical application, one standard binary IV method appeared to be biased when the

distributions of the compliance and outcome measures were highly skewed. Moreover, SMMs

retain a local robustness property for null effects.

We also highlighted a second useful extension of SMMs: estimating treatment effects

conditional on post-treatment covariates. Here, the treatment effect is allowed to vary along

levels of a post-treatment measure. While SMMs do require strong assumptions for identi-

fication under this extension, we argue this technique serves several useful purposes. In a

downstream experimental analysis, SMMs with post-treatment effect modification are com-
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plimentary to the IV approach proposed by Green and Gerber (2002). Both methods rely

differing sets of untestable assumptions, and when the results are consistent across both ap-

proaches conclusions are significant strengthened versus either method in isolation. Second,

such effect modification may provide useful hypothesis generation for future interventions.
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